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Abstract

This paper studies rational choice behavior of a player in sequential games of perfect and
complete information without an assumption that the other players who join the same games
are rational. The model of individually rational choice is defined through a decomposition
of the behavioral norm assumed in the subgame perfect equilibria, and we propose a set of
axioms on collective choice behavior that characterize the individual rationality obtained as
such. As the choice of subgame perfect equilibrium paths is a special case where all players
involved in the choice environment are each individually rational, the paper offers testable
characterizations of both individual rationality and collective rationality in sequential games.
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1 Introduction

A game is a description of strategic interactions among players. The players involved in a game
simultaneously or dynamically choose their actions, and their payoffs are determined by a profile
of chosen actions. A number of solution concepts for games, such as the Nash equilibrium or
the subgame perfect equilibrium, have been developed in the literature in order to study collective
choice of actions made by the players. In turn, these solution concepts are widely applied in
economic analysis to provide credible predictions for the choice of economic agents who reside in
situations approximated by games.
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However, most of solution concepts for games are defined by preference relations (usually
represented by payoff functions) of the players, while in practice only the choices of actions are
observed. So, even when a certain solution concept appears reasonable to make predictions of the
outcome of a game, we may not be able to apply such a concept unless preference relations of the
players are known to the outside observer. Hence, it is important for the empirical contents of the
game theory that there is a method that allows us to test the rationality of players and to reveal their
preference relations on the basis of observed data set.

In this paper, by assuming observability of the choice of actions made by players involved in
games, but not of their preference relations, we study a method to test whether they choose their
actions rationally according to their preference relations. This question in principle follows the
idea of the revealed preference theory pioneered by Arrow [1], Houthakker [8], Samuelson [14],
Sen [16], and others. Yet, we depart from the classical revealed preference theory for an individ-
ual decision maker by assuming observability of collective choice behavior from games and by
studying the rational choice behavior of multiple decision makers (or players) involved in such a
choice environment. In this regard, Sprumont [17] takes the games of simultaneous moves and
investigates axiomatizations of Pareto optimality and Nash equilibrium. Ray and Zhou [12] as-
sume observability of paths chosen by the players in extensive games and characterize the choice
of subgame perfect equilibria. In other contexts, Bossert and Sprumont [3] show that every choice
function is rationalizable as a result of the backwards induction when the observed data is lim-
ited, Carvajal et al. [4] develop the revealed preference theory for Cournot competition games,
and Carvajal and González [5] and Chiappori et al. [6] examine the testability of Nash solution in
two-player bargaining games. Recently, Schenone [15] studies the relation between the subgame
perfect equilibria and the backwards induction in a choice theoretic framework with, and without,
the weak axiom of revealed preferences (WARP).

It is however worth noting that the existing literature has focused on behavioral characteriza-
tions of the collective rationality (by which we mean the game theoretic equilibria) in the collective
choice environments, and a question of characterizing the individual rationality in this framework
remains unanswered. Indeed, the historical and recent developments in experimental economics
and in the theory of bounded rationality (Binmore et al. [2], Leng et al. [9], and others) suggest
that decision makers tend to violate predictions of the rational choice theory in practice. Therefore,
even when observed choice data does not support the collective rationality, it is still of interest to
identify a set of players, if not all, who make individually rational choice. A question thus leads to
finding a testable characterization of the individual rationality in the collective choice environment.
This is what this paper is after. (See Table 1.)

To this end, the paper also relates to the work of Gul and Pesendorfer [7], in which they study
intertemporal decision problems of a single decision maker with changing tastes. When the tastes
of a decision maker change over time, the same decision maker may be tempted to deviate from a
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choice data This paper Chiappori et al. [6]

Ray and Zhou [12]
Schenone [15]
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Table 1: Related literature

path of actions that she previously found optimal. In this situation, the model of consistent plan-
ning, originally proposed by Strotz [18], views the decision maker at different points in time as
different players and solves for an action path that she can actually follow through. Gul and Pe-
sendorfer axiomatize a representation termed the weakly Strotz model, in which only the decision
maker at the initial period is assumed to be fully rational while she may, at any point in the future,
choose her actions to maximize her payoffs given incorrect predictions of the beheavior of the sub-
sequent selves. The present paper marks a contrast with the weakly Strotz model by characterizing
the collective choice behavior where we postulate no behavioral assumption on players at any de-
cision nodes in the future. To highlight a difference, for any game with 2 periods, the weakly Strotz
model coincides with the evaluation of the game by the optimal subgame perfect equilibrium path,
as player 2, the player at the last period, does not have to form any predictions for the subsequent
players and is hence rational. In contrast, the concept of the individual rationality studied in this
paper allows behavioral choice of the players at period 2 (see Example 4).

This paper aims to characterize the individual rationality in the collective choice environment,
without relying on any behavioral assumption on the other players. In particular, following Gul and
Pesendorfer [7] and Ray and Zhou [12], we adopt a plain setup of sequential games where linearly
ordered players make their actions one after another, and observability is assumed for paths of
actions chosen by the players in such games. We focus on a person, called player 1, who chooses
an action first among all the players (i.e. the one who stands at the initial node) and seek a testable
axiomatization of the individual rationality for this player. A notion of individual rationality in
our simple framework is derived from a decomposition of the behavioral norm assumed in the
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subgame perfect equilibria into the level of the individual player. Specifically, if player 1 is rational,
then she should correctly form a history-dependent prediction of actions chosen by the subsequent
players and choose her own action in order to achieve an optimal path among those that are actually
followed by the players. Importantly, the other players may choose unrationalizable actions, but
even then, player 1 takes such into consideration and chooses her action to achieve the best outcome
among those that she can achieve. The main theorem of the paper provides an axiomatization on
the observed choice data that is equivalent to the rationality of player 1 in this sense.1

The collective rationality is reconstructed from the individual rationality. We show that any path
chosen by the players in sequential games must be a subgame perfect equilibrium path, provided
that all players in the environment is individually rational in the same sense above. Notably, since
the individual rationality of each player is testable through a plain adjustment of the same axiomati-
zation for player 1, this paper thus provides an axiomatic characterization for the choice of subgame
perfect equilibrium paths in sequential games, parallel to the result by Ray and Zhou [12].2 We
will also demonstrate a subtle yet important difference between the collectively rational choice and
the choice of subgame perfect equilibria.

The paper is structured as follows. In Section 2, we introduce a model of sequential games
used throughout the paper and then place the main concept of this paper, the individually rational
choice correspondences. We will also use some examples to motivate the model. In Section 3,
we discuss certain testable axioms on observed choice behavior in sequential games and show that
the proposed axioms characterize the individual rationality in the sequential games. The collective
rationality is studied in Section 4. We show that we can use the same set of axioms to test whether
the observed choice behavior is collectively rational, and, moreover, that a collectively rational
choice correspondence closely relates to the choice of subgame perfect equilibria. All proofs are
given in the appendix.

2 Individually rational choice in sequential games

2.1 Rationalizable choice

Let X be any nonempty set, and X a collection of nonempty subsets of X. A choice correspondence
on X is a map C : X → 2X such that ∅ , C(S ) ⊆ S for every S ∈ X. When X represents a set
of conceivably all alternatives in interest, a choice correspondence describes a decision maker’s

1Of course, there are other ways to formulate a model of individual rationality. For example, if we instead decompose
the solution concept by Pearce [11], we would obtain a weaker notion in which player 1 may have uncoordinated
predictions for the choice of actions by the other players. Providing revealed preference tests for such alternative models
of individual rationality is beyond the scope of this paper.

2Indeed, this paper generalizes an axiomatic characterization by Ray and Zhou [12] by allowing possibly set-valued
choice observations and game trees of infinite horizon.
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choice behavior on X. In particular, we interpret that, if S ∈ X is a set of feasible alternatives,
the decision maker is willing to choose any alternative in C(S ) from S . With this interpretation,
the collection X hence consists of choice sets from which we observe the decision maker’s choice
behavior. A choice correspondence is often interested when it is in a certain manner associated with
a preference relation of the decision maker. Throughout the paper, a preference relation on X refers
to a complete and transitive binary relation on X. In turn, we say that a choice correspondence C
on X is said to be rationalizable if there is a preference relation % on X such that C(S ) = {x ∈ S :
x % y for all y ∈ S } for every S ∈ X.

2.2 Sequential games

In this paper, we study collective choice of paths of actions from sequential games. More specifi-
cally, we focus on sequential games of perfect information where players t = 1, 2, 3, . . . are linearly
ordered and sequentially choose their actions with the knowledge of the actions chosen by the pre-
ceding players. Importantly, we only assume observability of chosen paths in the sequential games
and not of the players’ preference relations (or payoff functions) over the paths. We instead pos-
tulate that the unobserved preference relations of the players dictate their decision making, and, in
turn, we attempt to reveal their preferences from the observed collective choice behavior.

In order to describe such a choice environment, let A be an arbitrary nonempty set and X be a
nonempty set of infinite sequences of members of A. In this paper, we refer to any member of A as
an action and to that of X as a path of actions. For any path p ∈ X and t ≥ 1, we write pt to denote
the first t terms of p, that is, pt = (p1, . . . , pt). We interpret that the set X consists of conceivably all
paths that the players may follow without any feasibility constraint. However, the players may face
some restrictions on the feasible paths, and this restriction is represented by a subset G of X that
consists of only available paths for their choice. Now, a sequential game is defined as a nonempty
subset G of X with a certain closedness property.

Definition. A sequential game (or a game for short) in X is a nonempty subset G of X such that,
for any infinite sequence p of actions in A, if, for every t ≥ 1, qt = pt for some q ∈ G, then p ∈ G.

It is straightforward from the definition to show that any singleton subset of X is a sequential
game and that any union of two sequential games is also a sequential game. The closedness prop-
erty essentially makes the definition of sequential games by paths of actions adopted in this paper
equivalent with the definition of sequential games by nodes and feasible actions at each node. The
next example further clarifies this property.

Example 1 (Tree cutting problem). To interpret the definition of sequential games, let A = {0, 1},
and X = {0, e1, e2, . . .}, where 0 denotes the infinite sequence of zeros, and et is the tth unit vector
for each t ≥ 1. (See Figure 1.) In association with the tree cutting problem, we interpret 0 as a path
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Figure 1: A tree cutting problem

where the tree is never cut and et as one where the tree is cut by player t. Now, let G be a subset of
X such that {e1, e2, . . .} ⊆ G, and suppose that G is a sequential game. In this game, since et+1 ∈ G,
every player t ≥ 1 can choose not to cut the tree provided that it has not been cut by the preceding
players. But, then, the path 0, in which all the players choose not to cut the tree, should be also a
feasible path in this game. Indeed, since et

t+1 = 0t for all t ∈ N, the definition above implies that
0 ∈ G.

Remark (Games with finite horizon). Though we assume that every path in X is an infinite se-
quence of actions, the present framework imposes no loss of generality with respect to the number
of players. An environment that involves only finitely many players can be formulated by augment-
ing players each of whom has the only one action ∅, where ∅ is an arbitrary fixed member of A,
interpreted as “do nothing.” Formally, if the collection of conceivably all paths is given by a set Y of
sequences in A of finite length, we can proceed the analysis by setting X B {(p, ∅, ∅, . . .) : p ∈ Y}.
Similarly, the present framework allows sequential games that terminate at different periods de-
pending on paths of actions as in the next example.

Example 2 (Dynamic Bertrand competition with entry regulation). Suppose that, in a certain mar-
ket, firms are engaged in dynamic Bertrand competition under an entry regulation.3 We interpret
that players t = 2, 3, . . . are firms who wish to enter the market, whereas player 1 is a regulator of
the market who decides the number of the firms n ∈ {1, 2, . . .} that can actually enter the market.
We assume that the firms are aligned in the order of priority to enter the market, and those who
entered the market can manifest prices of their products in the same order. Then, this environment
can be modeled by a set A = N ∪ P ∪ {∅} of actions, where P is a set of prices chosen by the firms,
and a set

X =
⋃
n∈N

(
{n} × Pn × {∅}∞

)
3In particular, small markets such as a farmers market or a comic market may fit well in the context of this example.
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of conceivably all paths for the players to follow. In particular, a sequential game in this environ-
ment effectively terminates at period n + 1 when player 1 chooses an action n in the first period.

Let G be the collection of all sequential games in X. For any game G ∈ G, we define H1(G) =

{∅} and Ht(G) = {pt−1 : p ∈ G} for each t ≥ 2. Then, denote H(G) =
⋃

t≥1 Ht(G). We refer to any
member of Ht(G) as a history at period t and any member of H(G) as a history in G.4 In turn, we
define Gh B {p ∈ G : pt−1 = h} for any game G ∈ G, any period t ≥ 1, and any history h ∈ Ht(G).
Here, Gh is a game in G in which the players play the game G while the first t−1 players commit to
follow the history h. In this paper, we identify the game Gh with the continuation game in G after
the history h.5 We postulate that, once the players face a sequential game G in G, they collectively
choose a path of actions in the following manner. First, player 1 chooses its action a1. The action a1

must be feasible in the sense that there is a path p ∈ G with p1 = a1. (Or, equivalently, a1 ∈ H(G).)
Next, player 2 chooses its action a2, knowing that player 1 chose the action a1. Player 2’s action
has to be feasible after a history a1 in the sense that (a1, a2) ∈ H(G). Inductively, for every t ≥ 3,
and for every history h ∈ H(G) of length t − 1, provided that the players up to t − 1 have chosen
their actions h = (a1, . . . , at−1), player t chooses its feasible action at such that (h, at) ∈ H(G). As
a result of this procedure, a path q = (a1, a2, . . .) of actions is chosen by the players in the game G,
where the definition of the sequential games guarantees that q ∈ G. The players are responsible for
the choice of their own actions, but they have no control for the actions of the other players. We
assume observability of the collective choice of paths made in this way from each sequential game
in G. In other words, the paper takes a choice correspondence C on G as a primitive of the model.

Remark. Important remarks regarding the assumption of the choice observation are in order.

(i) All of the results of this paper remain true ifG is a nonempty collection of sequential games in X
such that G contains all singletons of X, G is closed under taking unions, and G is closed under
taking continuation games (that is, G ∈ G and h ∈ H(G) imply Gh ∈ G). While the collection
of all sequential games in X taken above for simplicity is an instance of G that satisfies these
conditions, we could alternatively take G as, for example, the collection of all finite subsets
of X. The latter framework can be useful in experimental contexts, for it allows us to test the
individual rationality of the players only on the basis of the observation of collective choice
behavior from finitely many paths.

4The unique member of H1(G) represents the null history. In what follows, with abuse of notation, we identify any
history of length 0 with the null history ∅ and any history h = (a) of length 1 with the action a itself. Therefore, the set
H2(G) of histories at period 2 coincides with the set of feasible actions for player 1 in the game G.

5This entails a behavioral assumption that the actions actually chosen by the preceding players can affect, but the
presence of the other feasible actions that they could have chosen does not affect, the choice of actions by the subsequent
players. One justification of this assumption is that the subsequent players may only observe the chosen actions by the
preceding players, but not the feasible sets of actions for them.
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(ii) By taking a choice correspondence C on G as the primitive of the model, though we do not
assume the observability of the players’ preference relations, the structures of game trees and
the choice of paths from each game tree are assumed to be observable. In contrast, Bossert and
Sprumont [3] and Rehbeck [13] show that any choice correspondence is backwards induction
rationalizable if we only observe chosen outcomes of the games but not the game trees. The
assumption of the observability of the game structures is hence indispensable for refutability
of the models of rational choice studied in this paper.

(iii) An implicit assumption adopted throughout the paper is that the players involved in the choice
environment choose pure strategies. A natural extension of interest would be to consider an
environment where the players may choose mixed strategies and we observe a stochastic choice
function that associates each sequential game G in G with a probability distribution (or a set of
probability distributions) over the paths in G. The axiomatic characterizations of individually
rational and collectively rational choice behavior in such a stochastic choice environment are
left as an open question.

2.3 Individual rationality

We seek a testable characterization of individually rational choice behavior by player 1 indepen-
dent of any behavioral assumptions on the other players. We define such a model of rational choice
through two requirements. The first requirement is the rational prediction of player 1 for the behav-
ior of the other players. Suppose that the players face a game G in G. In this game, the set H2(G) of
histories at period 2 coincides with the set of feasible actions for player 1. (See footnote 4.) Then,
by playing a feasible action a ∈ H2(G), player 1 passes the continuation game Ga to the subsequent
players. Note that the players are observed to choose paths in C(Ga) from the continuation game
Ga. If player 1 correctly anticipates the behavior of the other players, then she should not choose
an action a in order to achieve a path p < C(Ga) which is not followed through by the subsequent
players. The first condition of individual rationality requires that player 1 expect the other players
to follow a path in C(Ga) after each of her feasible action a ∈ H2(G) at the initial node. Notably, we
postulate that player 1 expects a path actually chosen by the other players in the continuation game
Ga to follow after any feasible action a ∈ H2(G) of herself. This assumption sets our model of in-
dividually rational choice to respect the idea of the subgame perfect equilibrium and to distinguish
itself from that of the Nash equilibrium.

The second requirement of the individual rationality is that player 1 chooses her action in order
to achieve an optimal path given the belief for the behavior of the other players. To be specific, we
postulate that player 1 has a preference relation on the set X of paths, and, for any a ∈ H2(G), she
prefers a chosen path p ∈ C(G) to a path q ∈ Ga that she believes the other players to follow in
case she plays an alternative action a. Below we show that this requirement naturally extends the
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traditional concept of individual rationality, that is, the model of preference maximization, to the
present framework (Example 3). These two requirements lead to the following definition of what
we term individually rational choice behavior in the collective choice environment.

Definition. A choice correspondence C on G is individually rational (at the initial node) if there
exists a preference relation % on X such that, for all G ∈ G, the following two statements are
equivalent:

(a) p ∈ C(G).

(b) p ∈ C(Gp1), and for any a ∈ H2(G), there exists a q ∈ C(Ga) with p % q.

Example 1 (continued). In the tree cutting problem, suppose that cutting the tree is a burdensome
but urgent matter for every player. Specifically, where %t denotes a preference relation of player t,
let et+1 �t et �t es �t 0 for all s > t + 1. (Therefore, every player prefers that the next player cuts
the tree, but she would rather prefer to do so by herself if any subsequent player cuts the tree.) In
addition, assume that player t, for every t ≥ 2, is myopic in the sense that she does not cut the tree
as long as it is feasible for the next player to do so. In this environment, if player 1 makes its choice
rationally, the collective choice behavior will be described by a choice correspondence C such that

C(G) =

e1 if e1, e3 ∈ G,

et∗ otherwise
for any G ∈ G,

where t∗ is the first t such that et ∈ G and et+1 < G (or et∗ = 0 if no such t exists). In particular,
if e3 ∈ G, player 1 cuts the tree whenever possible, rationally expecting that player 2 will not
do so. In contrast, any subsequent players are only boundedly rational, possibly ending up with
the path 0 even when it is feasible for them to cut the tree. To be specific, C(G) = 0 when G =

{0, e2, e3, . . .}, which player Notice that C is therefore not rationalizable The choice correspondence
C is individually rational at the initial node.

Example 3 (Rationalizable choice). It is straightforward to show that any rationalizable choice
correspondence on G is individually rational at the initial node. (In fact, under the jargon intro-
duced in Section 4, any rationalizable choice correspondence is individually rational at all decision
nodes and hence collectively rational.) The converse is yet false in general. Indeed, even when all
players involved in the choice environment is individually rational, the observed choice behavior
C might not be rationalizable. This is because, in the current collective choice environment, each
player only makes choice of her own action and cannot control those of the subsequent players, and
consequently, she may fail to achieve her most preferred path in a game.6 Now, let X be a set of

6For a concrete example, let A = {0, 1, x, y, ∅} and X = {0, x, y}, where 0 = (0, ∅, . . .), x = (1, x, ∅, . . .), y = (1, y, ∅, . . .).
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paths of form p = (a, ∅, ∅, . . .) for some a ∈ A, where ∅ is an arbitrary fixed member of A. We inter-
pret X as a choice environment for a single agent. In this environment, a choice correspondence C
on G is individually rational if and only if it is rationalizable. Hence, the model of individually ra-
tional choice behavior introduced above coincides with the standard notion of rationalizable choice
correspondences when there is only one player who makes a choice.

Example 4 (Choice under the attraction effect). Consider an environment where player 1, a seller,
chooses whether to enter a market or not, and, if the seller enters, then player 2, a buyer, chooses a
product to purchase from up to three alternatives x, y, and z. We interpret that x is the product of the
seller whereas y is that of a competitor, and it is profitable for this seller to enter the market only if
the buyer purchases x. The buyer is, however, boundedly rational and chooses x over y only when z
is feasible. (The alternative z is a decoy and never chosen by the buyer unless necessary.) Suppose
that the seller is rational and correctly anticipates the buyer’s behavior. To describe this choice
environment, let A = {0, 1, x, y, z, ∅} and X = {0, x, y, z}, where 0 = (0, ∅, . . .) and a = (1, a, ∅, . . .)
for each a = x, y, z. (See Figure 2.) Then, the choice behavior of the players above is described by
a choice correspondence C such that

C(G) =


x if G = X, {0, x, z}, {x, y, z}, or {x, z}

y if G = {x, y} or {y, z}

0 if G = {0, x, y} or {0, y, z}

for any G ∈ G.

In particular, player 1 chooses to enter the market when G = X (as z is present), while it defers to
do so when G = {0, x, y}. Importantly, player 2’s choice behavior in the games cannot be described
by the standard model of preference maximization. The choice correspondence C is nevertheless
individually rational at the initial node.

3 Axiomatic characterization of individual rationality

In the last section, we introduced the model of individual rationality in sequential games. We shall
seek a characterization of this model by testable axioms in what follows. To this end, it will be
convenient to write

Γ(G) B {Ga : a ∈ H2(G)}

Then, a choice correspondence C on G defined by

C({0, x}) = {x}, C({0, y}) = {0}, C({x, y}) = {y}, C({0, x, y}) = {0}

is individually rational at the initial node. In fact, it is collectively rational under the term introduced in Section 4. (Note
that C is the choice of the subgame perfect equilibrium paths, where the preference relations of player 1 and player 2
are such that x �1 0 �1 y and y �2 x.) The choice correspondence C is not rationalizable, for C({0, x}) = {x} whereas
C({0, x, y}) = {0}. Player 1 fails to achieve her favorite path x even when it is feasible in the game {0, x, y}.
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Figure 2: Choice under the attraction effect

for any game G in G. This is the decomposition of the game G into its continuation games which
player 1 can pass to the subsequent players. Note that

⋃
Γ(G) = G, and any distinct members of

Γ(G) are pairwise disjoint, and hence Γ(G) is a partition of G.
The model of the individual rationality in Section 2.3 is characterized via three levels of axiom-

atization. The first level of the axiomatization is a requirement that, without altering the structures
of continuation games, the choice of an action by player 1 (to achieve a certain path) be pairwise
optimal against the other actions of player 1. Suppose that G is an arbitrary game, p is a feasible
path in G, and a ∈ H2(G) is an arbitrary action of player 1 in G. Then, consider a game Gp1 ∪Ga,
in which player 1 can choose either the action p1 to pass the continuation game Gp1 or the action
a to pass the continuation game Ga. If we observe that the path p is chosen from this game, that
is, p ∈ C(Gp1 ∪Ga), then player 1 finds it acceptable to choose the action p1 to achieve the path p
when it is alternatively feasible to take the action a. Therefore, the choice of the path p is in this
sense “supported” by player 1 against the continuation game Ga. The first axiom requires that the
path p be chosen from the game G if, and only if, it is supported by player 1 in the same sense
above for every pairwise comparison with continuation games of the original game G.

A1. For any G ∈ G and p ∈ G, p ∈ C(G) if and only if p ∈ C(Gp1 ∪G′) for all G′ ∈ Γ(G).

Note that, under A1, a choice correspondence is fully characterized by the choice from games in
which player 1 has at most two actions to take. The second level of the axiomatization then imposes
a condition on the collective choice behavior for such games. In particular, the next axiom requires
that, if player 1 has exactly two actions in a game, then the choice from the game coincides with
the removal of dominated paths against those that player 1 anticipates to result when she chooses
alternative actions. To illustrate, suppose that G is an arbitrary game such that Γ(G) = {Ga,Gb}

with Ga , Gb. In this game, player 1 has two distinct actions a and b, and the continuation games
are given by Ga and Gb, respectively. Also, suppose that p ∈ C(Ga), and hence a path p is chosen
by the subsequent players in the continuation game Ga. Then, under what condition would it be
reasonable that we observe the same path p not chosen from the game G? Note that player 1 can
avoid the choice of the path p in the game G by playing the action b. If she chooses the action b
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and passes the continuation game Gb to the subsequent players, player 1 can anticipate that a path
from C(Gb) will take place. Now, let q ∈ C(Gb) be such a path, and suppose that C({p, q}) = {q}.
Observe that p1 = a , b = q1, and hence, in the game {p, q}, player 1 can unilaterally commit
to the choice of a path (by choosing the action a or b). Therefore, we infer from the condition
C({p, q}) = {q} that player 1 prefers q over p. If this holds for any path q in C(Gb), then player 1
has no reason not to choose the action b to avoid the path p. The second axiom requires that the
path p be not chosen from the game G if, and only if, player 1 prefers every path in C(Gb) to the
path p in the binary comparison.

A2. For any distinct G and G′ in G with Γ(G ∪G′) = {G,G′} and p ∈ C(G), p < C(G ∪G′) if and
only if C({p, q}) = {q} for all q ∈ C(G′).

Under A1 and A2, a choice correspondence boils down to be determined by the choice be-
havior C({p, q}) on binary comparisons (besides the choice behavior on the continuation games).
The last level of the axiomatization then imposes a consistency condition for these binary choice
observations. To facilitate the exposition, we shall say that a path p is revealed preferred to another
path q if p1 , q1 and p ∈ C({p, q}). This construction follows the idea that the observed choice
behavior reveals a preference relation of player 1 when she can commit to the choice of a path in a
game, as already used in the justification of A2. Then, we shall in turn say that a path p is indirectly
revealed preferred to another path q if there exists a path r such that p1 , r1 , q1, p ∈ C({p, r}) and
r ∈ C({r, q}). This construction allows the inference of the preference relation of player 1 for two
paths p and q even when p1 = q1. Now, suppose that p is indirectly revealed preferred to q, and
q ∈ C({q} ∪G) where G is a game such that {q} ∈ Γ({q} ∪G). The last condition, {q} ∈ Γ({q} ∪G),
implies that player 1 can commit to the choice of the path q in a game {q} ∪G. Therefore, here we
assume that player 1 is willing to commit to the choice of the path q in the game where she can do
so. The last axiom then requires that, by replacing the path q with the preferred path p, if player 1
could still commit to the choice of the path p, then she be willing to do so.

A3. Let p, q ∈ X and G ∈ G be such that {p} ∈ Γ({p} ∪G) and {q} ∈ Γ({q} ∪G), and suppose that
p ∈ C({p, r}) and r ∈ C({r, q}) for some r ∈ X with p1 , r1 , q1. Then, q ∈ C({q} ∪ G) implies
p ∈ C({p} ∪G).

We show that the three axioms above characterize our model of the individual rationality.

Theorem 1. A choice correspondence C on G is individually rational at the initial node if, and
only if, it satisfies A1, A2, and A3.

By Theorem 1, if a choice correspondence C satisfies A1 through A3, then we know that there
exists a preference relation % on X under which C is individually rational at the initial node. In fact,
we can show that the revealed preference relation introduced in the discussion of the axioms above
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provides us with the unique part of rationalizing preference relations. To formally state the result,
given an arbitrary choice correspondence C on G, we shall define a binary relation %∅C on X (with
its strict part �∅C) by p %∅C q iff (i) p = q, (ii) p is revealed preferred to q, or (iii) p is indirectly
revealed preferred to q. Importantly, the binary relation %∅C is constructed only on the basis of the
observed choice correspondence C and hence it is itself observable. The next proposition follows.

Proposition 2. Suppose that a choice correspondence C on G is individually rational at the initial
node. Then, %∅C is a preorder on X, and the two statements below are equivalent for any preference
relation % on X.

(i) C is individually rational at the initial node under %.

(ii) % extends %∅C .

Moreover, given any preorder D on X (with its strict part B), there exists a preference relation % on
X such that % extends D and C is individually rational at the initial node under %, provided that

p tran
(
%∅C ∪ D

)
q =⇒ neither q �∅C p nor q B p holds (1)

for any p, q ∈ X.7

The first half of Proposition 2 provides the uniqueness result on rationalizing preference rela-
tions for the model of individually rational choice behavior. Specifically, given a choice correspon-
dence C on G that is individually rational at the initial node, it shows that any preference relation
% extending %∅C must rationalize C, and, conversely, any preference relation % rationalizing C must
extend %∅C . The second half of Proposition 2 offers a testable condition for the existence of a ratio-
nalizing preference relation % that extends a given preorder on X. This result is particularly useful
when we are given exogenous knowledge about a preference relation of the player and interested in
testing consistency of the observed choice behavior against such knowledge. (A similar condition
is used in the context of consumer revealed preference theory in Nishimura et al. [10, Proposition
1].)

Remark. Important remarks on Proposition 2 are in order.

(i) Note that %∅C is constructed only by the choice observation of form C({p, q}). Therefore, while
we need the observation from richer choice problems in order to test the individual rationality
of a player in our framework, the exercise of revealed preference itself can be conducted with
only the choice observation from pairwise choice problems. This fact could serve in handy in
experimental contexts to design an efficient experiment for revealing preference relations of the
subjects.

7In this proposition and what follows, given any two binary relation R and P on X (with the corresponding strict parts
R> and P>), we say that R extends P if R ⊇ P and R> ⊇ P>. Also, we shall denote by tran(R) the transitive closure of R.
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(ii) Throughout the paper, we assume that the players have preference relations over the set X of
paths of actions. However, it is sometimes assumed that each path of actions is mapped to a
certain outcome, and the players have preference over the outcomes rather than over the paths
of actions. The individual rationality of the observed choice behavior in such a framework can
be tested with a requirement (in addition to A1-A3) that the player must be indifferent for any
two paths that lead to the same outcome. To formally state the result, let Z be a nonempty set
of outcomes, and suppose that each path in X leads to an outcome in Z according to a mapping
ξ : X → Z. Then, by defining an equivalent relation ≈ on X by p ≈ q iff ξ(p) = ξ(q), we seek a
testable condition under which the observed choice C is individually rational at the initial node
under a preference relation % that extends ≈. By Proposition 2, this condition can be written as

p tran
(
%∅C ∪ ≈

)
q =⇒ not q �∅C p

for any p, q ∈ X.

4 Collective rationality in sequential games

4.1 Individually rational choice at an arbitrary decision node

In Section 2.3, we introduced the model of individually rational choice in sequential games. There
we postulate that player 1, a player who makes decision at the initial node, is rational, and we study
a representation in which the player makes a rational choice of her action in order to achieve an
optimal path given the choice behavior of the subsequent players. This section extends the concept
of the individual rationality for a player who stands at an arbitrary decision node. We shall write

H B
⋃
G∈G

H(G) = {pt−1 : p ∈ X, t ≥ 1}.

This is the set of all histories across all games in G. Given that this paper studies sequential games
of perfect information, we may identify an arbitrary history in H with a decision node of a player
who makes choice given the same history. In this sense, with abuse of terminology, we will refer
to any history in H also as a decision node. Let h ∈ H be a decision node. Then, for an arbitrary
game G ∈ G, there may or may not exist a path p ∈ G that “passes through” this decision node
h. We have h ∈ H(G) if such a path exists and h < H(G) otherwise. When h ∈ H(G), the player
who makes choice at the decision node h faces the continuation game Gh, provided that a play
of the game reaches the decision node h. At this node, an action a ∈ A is feasible if and only if
(h, a) ∈ H(G), and she passes the continuation game G(h,a) to the subsequent player by choosing a
feasible action a. The next definition gives a straightforward extension of the individually rational
choice correspondences introduced in Section 2.3 for arbitrary decision nodes. (Indeed, it reduces
to the definition in Section 2.3 when h is the null history ∅.)
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Definition. Given an arbitrary h ∈ H, a choice correspondence C on G is individually rational at a
decision node h if there exists a preference relation % on X such that, for all G ∈ G with h ∈ H(G),
the following two statements are equivalent:

(a) p ∈ C(Gh).

(b) p ∈ C(G(h,pt)), and for any a with (h, a) ∈ H(G), there exists a q ∈ C(G(h,a)) with p % q,

where t ≥ 1 in the second statement is such that pt−1 = h (so t − 1 equals the length of h).

In Section 3, we provide an axiomatic characterization of the individually rational choice cor-
respondences at the initial node. Since the individual rationality at an arbitrary decision node h is
defined by the same representation only relative to the node h, we can indeed characterize it with an
application of the same set of the axioms. To see this, let C be a choice correspondence on G, and
fix any decision node h ∈ H. We set X|h B {p : (h, p) ∈ X} and let G|h be the set of all sequential
games in X|h. Then, define a choice correspondence C|h on Gh by

C|h(G) = {p : (h, p) ∈ C({(h, q) : q ∈ G})} (2)

for any G ∈ G|h. Note that the construction (X|h,G|h,C|h) extracts the choice environment and
choice observations at and after the history h from the original (X,G,C) while “shifting” the deci-
sion node h to the initial node. Hence, the individual rationality of the choice correspondence C at
the node h is equivalent to that of C|h at the initial node, leading us to the next proposition.

Proposition 3. Let C be a choice correspondence on G. Then, the following three statements are
pairwise equivalent for any h ∈ H:

(a) C is individually rational at a decision node h;

(b) C|h is individually rational at the initial node;

(c) C|h satisfies A1, A2, and A3.

Importantly, the choice correspondence C|h is defined only through the choice correspondence C.
Therefore, we can test the individual rationality of players at arbitrary decision nodes on the basis
of the same observation C assumed in Section 3.

Remark. Let C be a choice correspondence on G individually rational at a decision node h. Then,
we can uniquely identify the “essential” part of a preference relation of the player at the node h.
Note that C|h is individuallly rational at the initial node (Proposition 3), and C|h is rationalized by
a preference relation on X|h iff it extends %∅C|h (Proposition 2). Therefore, where we define a binary
relation %h

C on X by
(h, p) %h

C (h, q) ⇐⇒ p %∅C|h q (3)
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for all p, q ∈ X|h, it follows that C is individually rational at the decision node h under a preference
relation % on X if and only if % extends %h

C . Note that this is a generalization of the same uniqueness
result in Proposition 2 relative to an arbitrary decision node h. (In fact, it reduces to Proposition 2
if h is the null history ∅.)

4.2 Collective rationality

In Section 4.1, we introduced the model of the individual rationality for players at arbitrary decision
nodes and verified that we can use the same set of the axioms to test whether the observed choice
data admits this model. This means that, given a choice correspondence C on G, we can in prin-
ciple identify the set of decision nodes at which players make individually rational choice. In this
section, we study a special case of such identification, where the choice correspondence C turns
out individually rational at all decision nodes in the environment. We say that such choice data is
collectively rational and show that it is in fact closely related to the subgame perfect equilibria, a
well-known solution concept for sequential games.

Definition. A choice correspondence C on G is collectively rational if it is individually rational at
a decision node h for every h ∈ H.

Before proceeding with the analysis of the collectively rational choice correspondences in con-
junction with the subgame perfect equilibria, we shall clarify testability of a hypothesis that the
same players may choose actions more than once in games in G. By definition, for any collectively
rational choice correspondence C on G, and for any h ∈ H, there exists a preference relation that
rationalizes the observed choice behavior C at the decision node h. But these preference relations
in general differ across different decision nodes. The next proposition offers a testable condition
written in terms of the revealed preference relations given in (3) that allows us to view the observe
choice behavior C as if it is made by the same player at different decision nodes in H.

Proposition 4. Let H′ be a nonempty subset of H, and suppose that C is a choice correspondence
on G individually rational at each decision node in H′. Then, there exists a preference relation %
on X such that, for all h ∈ H′, C is individually rational at the decision node h′ under %, provided
that

p tran
( ⋃

h∈H′
%h

C

)
q =⇒ q �h

C p holds for no h ∈ H′ (4)

for any p, q ∈ X.

Therefore, in words, Proposition 4 shows that C can be rationalized at all decision nodes in H′

under the same preference relation %, given that condition (4) holds. Now, let t ≥ 1 and H′ be the
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set of all histories h in H of length t − 1. It is obvious from (3) that the revealed preference relation
%h

C for each h ∈ H′ compares only paths p ∈ X with pt−1 = h. This fact allows us to deduce

tran
( ⋃

h∈H′
%h

C

)
=

⋃
h∈H′
%h

C ,

which in turn implies condition (4). The next result thus follows as a corollary of Proposition 4.
Importantly, it shows that, for any collectively rational choice correspondence, we can assume that
the choice of actions at all decision nodes in period t is made by the same player without imposing
any additional consistency on the observed choice behavior.

Corollary. Suppose that C is a collectively rational choice correspondence on G. Then, there
exists a sequence of preference relations (%1,%2, . . .) such that, for any t ≥ 1 and h ∈ H of length
t − 1, C is individually rational at the decision node h under %t.

Example 5 (Games with alternate moves). Proposition 4 can be further utilized in other contexts.
For example, (rather than we consider an environment where linearly ordered players sequentially
make choice of actions) suppose that there are only two players who alternately move in the games
in G. If we are interested in, say, verifying the individual rationality of the player who moves
in odd turns in this environment, then this can be done by testing the individual rationality of an
observed choice correspondence C at each decision node h ∈ Hodd (by Proposition 3) along with
the condition that

p tran
( ⋃

h∈Hodd

%h
C

)
q =⇒ q �h

C p holds for no h ∈ Hodd,

where Hodd is the set of all decision nodes h in H of length of even numbers.8 By Proposition 4,
this condition guarantees the existence of the same preference relation % on X that rationalizes the
observed choice C at every decision node h ∈ Hodd.

Now, in order to study the connection of the collectively rational choice correspondences with
the game theoretic solution concept, we will first formulate a choice model of subgame perfect
equilibrium paths in the present framework. Let (%1,%2, . . .) be a sequence of preference relations
on X. For any G ∈ G, we say that a mapping s : H(G) → H(G) is a strategy profile in a game G
if, for all h ∈ H(G), there exists an action a ∈ A with s(h) = (h, a) ∈ H(G). The set of all strategy
profiles in G is denoted by Σ(G). For any strategy profile s ∈ Σ(G) and any history h ∈ H(G), we
inductively define s0(h) B h and sk(h) B s(sk−1(h)) for each k ≥ 1. Then, we define s∞(h) as a
sequence of actions in A such that, for any k ≥ 1, its first k terms coincide with those of sk(h). Note
that s∞(h) represents a path of actions followed according to the strategy profile s when the game

8Note that the length of the decision nodes (or the histories) for the player who moves in odd turns is even numbers.
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is played from the decision node h. Also, observe that s∞(h) ∈ G by the definition of the sequential
games. We say that a strategy profile s ∈ Σ(G) is a subgame perfect equilibrium (or an SPE for
short) given (%1,%2, . . .) if s∞(h) %t s∞(h, a) for any t ≥ 1, for any history h ∈ H(G) of length t− 1,
and for any a ∈ A with (h, a) ∈ H(G). Now, we set

SPE(G|%1,%2, . . .) =
{
s∞(∅) : s is an SPE in G given (%1,%2, . . .)

}
for every G ∈ G. This set consists all subgame perfect equilibrium paths in a game G ∈ G given
preference relations (%1,%2, . . .) of the players.

The collective rationality of the choice behavior introduced in this section closely relates to the
choice model of subgame perfect equilibrium paths. In fact, we show that a collectively rational
choice correspondence chooses only subgame perfect equilibrium paths in any game G ∈ G under
the same sequence (%1,%2, . . .) of preference relations. Moreover, if a game is “pointwise” finite
horizon (in the sense that any path in this game is derived by nontrivial choice of actions by only
finitely many players), then the collectively rational choice behavior indeed coincides with the
choice of subgame perfect equilibrium paths.

Theorem 5. If C is a collectively rational choice correspondence onG, then there exists a sequence
(%1,%2, . . .) of preference relations on X such that C(G) ⊆ SPE(G|%1,%2, . . .) for all G ∈ G, and
moreover, C(G) = SPE(G|%1,%2, . . .) for all G ∈ G such that

p ∈ G ⇒ ∃ t ≥ 1 s.t.
(
q ∈ G and qt = pt imply q = p

)
. (5)

Conversely, if C is a choice correspondence on G for which there exists a sequence (%1,%2, . . .) of
preference relations on X such that C(G) = SPE(G|%1,%2, . . .) for all G ∈ G, then C is collectively
rational.

In particular, any sequential game in G satisfies condition (5) if X is finite horizon. (See the remark
on games with finite horizon in Section 2.2. Example 3 or Example 4 fit in this case for instance.)
This observation leads to the following corollary of Theorem 5, which verifies the equivalence of
the collectively rational choice behavior with the choice of subgame perfect equilibrium paths. As
we can test the collective rationality of a choice correspondence by Proposition 3, this result pro-
vides an axiomatic characterization of the choice of SPE paths in games of finite horizon, parallel
to the work by Ray and Zhou [12].

Corollary. Suppose that there exists T ≥ 1 such that p, q ∈ X and pT = qT imply p = q. Then,
a choice correspondence C on G is collectively rational if and only if there exists a sequence
(%1,%2, . . .) of preference relations on X such that C(G) = SPE(G|%1,%2, . . .) for all G ∈ G.

Remark. Recall the model of dynamic Bertrand competition with an entry regulation given in Ex-
ample 2. In this environment, while X is not finite horizon, any sequential game G ∈ G still satisfies
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(5). Therefore, it follows from Theorem 5, but not from the corollary, that a choice correspondence
C in this environment is collectively rational if, and only if, there exists a sequence (%1,%2, . . .) of
preference relations on X such that C(G) = SPE(G|%1,%2, . . .) for all G ∈ G.

Theorem 5 suggests that the collectively rational choice behavior may apply a certain selection
to the subgame perfect equilibrium paths for games of infinite horizon. The next example provides a
concrete instance of a collectively rational choice correspondence C such that C(G) indeed excludes
some subgame perfect equilibrium paths in some games G ∈ G of infinite horizon.

Example 1 (continued). In the tree cutting problem, we shall this time assume that the tree is best
appreciated by all players when it is preserved, but each player would rather cut the tree by herself
if anyone else would do so. To be specific, suppose that a preference relation of player t, for every
t, satisfies 0 �t et �t es for all s > t. We define a choice correspondence C on G by

C(G) =

0 if 0 ∈ G,

et∗ otherwise
for any G ∈ G,

where t∗ is the first t such that et ∈ G. Then, C is collectively rational under the preference relations
(%1,%2, . . .), while et∗ is also an SPE path in some games G in G with 0 ∈ G (such as G = X).9

Therefore, a collectively rational choice correspondence may exclude some SPE paths.

We argue that the theoretical insight from the example above is beyond of technical interest. The
normative appeal of the model of collectively rational choice seems solid, particularly if we ac-
cept the concept of subgame perfect equilibria. After all, the individual rationality in the collective
choice environment is defined in this paper by decomposing the players behavior in subgame per-
fect equilibria, and we attempt to reconstruct the same solution concept through the idea of the
collective rationality. Nevertheless, when we do so, some subgame perfect equilibrium paths may
appear more plausible compared to the other. The observation above offers a certain criterion to
refine the subgame perfect equilibria from the perspective of the choice theory.

Appendix

A.1 Proofs

Proof of Theorem 1. Let C be a choice correspondence on G individually rational at the initial node with a
rationalizing preference relation % on X. First, observe that, for any p, q ∈ X with p1 , q1, the representation

9Note that the same conclusion holds for any sequence of preference relations that rationalizes C. Indeed, we can
show that, if (%′1,%

′
2, . . .) rationalizes C, then it must satisfy 0 �′t et �

′
t es for all t and s with s > t. We also note that the

same conclusion of this example can be replicated in any environment as long as it embeds the structure X of the tree
cutting problem (such as, for example, those of infinite horizon consumption choice problems).
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implies
p ∈ C({p, q}) ⇔ p % q. (6)

To verify A1, take any G ∈ G and p ∈ G. Note that, by the representation, for any a ∈ H2(G),

p ∈ C(Gp1 ∪Ga) ⇔ p ∈ C(Gp1 ) and there exists q ∈ C(Ga) with p % q. (7)

Hence, we have

p ∈ C(G) ⇔ p ∈ C(Gp1 ) and for any a ∈ H2(G), there exists q ∈ C(Ga) with p % q

⇔ p ∈ C(Gp1 ∪Ga) for any a ∈ H2(G)

⇔ p ∈ C(Gp1 ∪G′) for any G ∈ Γ(G),

where the first equivalence follows from the representation, and the second from (7). So, we obtain A1.
Next, to show that C satisfies A2, take any distinct G and G′ in G with Γ(G ∪G′) = {G,G′} and p ∈ C(G).
Then, since there obviously exists a q ∈ C(G) with p % q (by taking q B p), the representation implies

p < C(G ∪G′) ⇔ q � p for all q ∈ C(G′).

By (6), this equivalence readily implies A2. Lastly, we shall verify A3. Note that, for any p ∈ X and G ∈ G
with {p} ∈ Γ({p} ∪G), the representation implies

p ∈ C({p} ∪G) ⇔ for any a ∈ H2(G), there exists a p′ ∈ C(Ga) with p % p′. (8)

Fix any p, q ∈ X and G ∈ G such that {p} ∈ Γ({p} ∪G) and {q} ∈ Γ({q} ∪G). Also, suppose that p ∈ C({p, r})
and r ∈ C({r, q}) for some r ∈ X with p1 , r1 , q1. Then, we have p % r % q by (6) and thus p % q. Now, if
q ∈ C({q} ∪G), then (8) implies that

for any a ∈ H2(G), there exists a p′ ∈ C(Ga) with q % p′,

which in turn implies that

for any a ∈ H2(G), there exists a p′ ∈ C(Ga) with p % p′

as p % q. Applying (8) again to the last condition yields p ∈ C({p} ∪G), as required.
Conversely, let C be a choice correspondence on G that satisfies A1, A2, and A3. Define binary relations

∆X , D, D′ on X by ∆X B {(p, p) : p ∈ X} (so ∆X is the diagonal relation on X); p D q iff p1 , q1 and
p ∈ C({p, q}); and pD′ q iff p1 = q1 and pD rD q for some r ∈ X. As in the main text of the paper, we define
%∅C B ∆X ∪ D ∪ D

′ with its strict part denoted as �∅C . Then, %∅C is obviously reflexive. Moreover, since p D q
and q D′ p hold for no p, q ∈ X, we have B ⊆ �∅C and B′ ⊆ �∅C . Also, we have

p D q D r D p′ and p1 , p′1 imply p D p′ (9)

for any p, q, r, p′ ∈ X. (To see this, set G B {p′}, and observe that {p} ∈ Γ({p} ∪ G), {r} ∈ Γ({r} ∪ G), and
r ∈ C({r} ∪G). So, A3 implies that p ∈ C({p} ∪G) = C({p, p′}), that is, pD p′.) Now, we shall show that %∅C
is transitive. To this end, take any p, p′, p′′ ∈ X, and suppose that p %∅C p′ %∅C p′′. If any two of these three

20



paths are identical, then we have p %∅C p′′ at once. So, suppose that p, p′, p′′ are pairwise distinct. Then, the
following cases exhaust all possibilities: (i) pD p′ D p′′; (ii) pD p′ D′ p′′; (iii) pD′ p′ D p′′; (iv) pD′ p′ D′ p′′.
Assume (i) holds. If p1 = p′′1 , then p D′ p′′ and thus p %∅C p′′. So, let p1 , p′′1 . Then, where G B {p′′},
since {p} ∈ Γ({p} ∪G) and {p′′} = Γ({p′′} ∪G) = C({p′′} ∪G), we have p ∈ C({p} ∪G) = C({p, p′′}) by A3.
Hence, p D p′′ and p %∅C p′′. Alternatively, if (ii) holds, then we have p D p′ D r D p′′ for some r ∈ X and
p1 , p′1 = p′′1 , and therefore (9) implies p D p′′ and p %∅C p′′ at once. We can similarly show that p %∅C p′′

when (iii) holds. Lastly, suppose that (iv) holds. Then, we have p D r D p′ D r′ D p′′ for some r, r′ ∈ X and
p1 = p′1 = p′′1 , r′1. Then, we have p D r′ by (9), and hence p D′ p′′ and p %∅C p′′. We have derived p %∅C p′′

in all contingencies, concluding that %∅C is transitive. It is well known that any reflexive and transitive binary
relation can be extended to a complete and transitive binary relation.10 Therefore, a preference relation on X
that extends %∅C exists, and we let % be any such preference relation in what follows. Now, take any G ∈ G.
Then, by the contrapositive of A2, for any p ∈ C(Gp1 ) and a ∈ H2(G) with a , p1,

p ∈ C(Gp1 ∪Ga) ⇔ there exists a q ∈ C(Ga) such that p ∈ C({p, q})

and hence

p ∈ C(Gp1 ∪Ga) ⇔ there exists a q ∈ C(Ga) such that p % q (10)

as % extends D. Also, note that (10) trivially holds for any p ∈ C(Gp1 ) and a ∈ H2(G) with a = p1. In turn,
A1 implies that, for any p ∈ G,

p ∈ C(G) ⇔ for any G′ ∈ Γ(G), p ∈ C(Gp1 ∪G′)

⇔ for any a ∈ H2(G), p ∈ C(Gp1 ∪Ga)

⇔ p ∈ C(Gp1 ), and for any a ∈ H2(G), p ∈ C(Gp1 ∪Ga)

⇔ p ∈ C(Gp1 ), and for any a ∈ H2(G), there exists a q ∈ C(Ga) such that p % q,

where the last equivalence follows from (10). As G is arbitrary, this verifies that C is individually rational at
the initial node under the preference relation %. The proof is complete. �

Proof of Proposition 2. For the first half of the proposition, suppose that a choice correspondence C on G is
individually rational at the initial node. Then, C satisfies A1-A3 by Theorem 1. Moreover, in the proof of
Theorem 1, assuming that C satisfies A1-A3, we have already verified that %∅C is a preorder on X and that
any preference relation % that extends %∅C rationalizes C at the initial node. So, conversely, suppose that C is
individually rational at the initial node under a preference relation % on X. Where D and D′ are as defined in
the proof of Theorem 1, it follows that

p D q ⇒ p1 , q1 and p ∈ C({p, q}) ⇒ p % q;

p B q ⇒ p1 , q1 and {p} = C({p, q}) ⇒ p � q.

10This result was first proved by Szpilrajn [19].
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Hence, % extends D. This in turn implies that

p D′ q ⇒ p D r D q for some r ∈ X

⇒ p % r % q for some r ∈ X

⇒ p % q;

p B′ q ⇒ p B r D q or p D r B q for some r ∈ X

⇒ p � r % q or p % r � q for some r ∈ X

⇒ p � q,

verifying that % extends D′. This completes to show that %∅C = ∆X ∪D∪D
′ ⊆ % and �∅C = B∪B′ ⊆ �, that is,

% extends %∅C . For the second half of the proposition, take any preorder D on X, and suppose that condition
(1) holds. To reduce notation, let us write D∗ = tran

(
%∅C ∪ D

)
. Obviously, we have %∅C ∪ D ⊆ D

∗. If p �∅C q,
then we have p D∗ q (as %∅C ⊆ D

∗) and not q D∗ p (or otherwise (1) implies not p �∅C q). So, D∗ extends %∅C .
Similarly, we can show that D∗ extends D. Conclusion: D∗ is a preorder on X that extends both %∅C and D.
Now, by Szpilrajn’s theorem (see footonote 10), there exists a preference relation % on X that extends D∗.
Since % extends %∅C , it rationalizes C at the initial node by the first half of this proposition. As % also extends
D, the proof is now complete. �

Proof of Proposition 3. (a)⇒(b). Let h ∈ H, and suppose that C is individually rational at a decision node
h under a preference relation % on X. Define a binary relation %′ on X|h by p %′ q iff (h, p) % (h, q) for
any p, q ∈ X|h. It is straightforward to show that %′ is complete and transitive. Moreover, for any G ∈ G|h,
p ∈ C|h(G) iff (h, p) ∈ C({(h, p′) : p′ ∈ G}) by (2), which is in turn equivalent to

(h, p) ∈ C(G′(h,p1)), and∀ a with (h, a) ∈ H(G′), ∃ (h, q) ∈ C(G′(h,a)) with (h, p) % (h, q) (11)

by the representation, where G′ B {(h, p′) : p′ ∈ G}. But, observing that (2) implies

(h, p) ∈ C(G′(h,p1)) ⇔ (h, p) ∈ C({(h, p′) : p′ ∈ G, p′1 = p1})

⇔ p ∈ C|h(Gp1 );

(h, a) ∈ H(G′) ⇔ a ∈ H2(G);

(h, q) ∈ C(G′(h,a)) ⇔ (h, q) ∈ C({(h, p′) : p′ ∈ G, p′1 = a})

⇔ q ∈ C|h(Ga);

the condition (11) is further equivalent to say that

p ∈ C|h(Gp1 ), and∀ a ∈ H2(G), ∃ q ∈ C|h(Ga) with p %′ q.

As G ∈ G|h is arbitrary, C|h is hence individually rational at the initial node under %′.
(b)⇒(a). Take any h ∈ H, where we let t ≥ 1 equal the length of the sequence h plus one, and suppose

that C|h is individually rational at the initial node under a preference relation % on X|h. Define a binary
relation %′ on X by, for any p, q ∈ X, p %′ q iff either (i) p = q or (ii) p = (h, p′), q = (h, q′), and p′ % q′.
It is easy to see that %′ is reflexive and transitive. So, there exists a preference relation on X that extends %′.
(See footnote 10.) Abusing notation, we shall denote this preference relation on X by %′. Fix any G ∈ G
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with h ∈ H(G) and any p ∈ Gh. Let G′ = {q′ ∈ X|h : (h, q′) ∈ Gh}, and then we have p = (h, p′) for some
p′ ∈ G′. It follows that

p ∈ C(Gh) ⇔ (h, p′) ∈ C({(h, q′) : q′ ∈ G′})

⇔ p′ ∈ C|h(G′)

⇔ p′ ∈ C|h(G′p′1 ), and ∀ a ∈ H2(G′), ∃ p′′ ∈ C|h(G′a) with p′ % p′′, (12)

where the second equivalence follows from (2) and the last from the representation. Since we can show that

p′ ∈ C|h(G′p′1 ) ⇔ (h, p′) ∈ C({(h, q′) : q′ ∈ G′p′1 })

⇔ p ∈ C(G(h,p′1))

⇔ p ∈ C(G(h,pt+1));

a ∈ H2(G′) ⇔ (h, a) ∈ H(G);

p′′ ∈ C|h(G′a) ⇔ (h, p′′) ∈ C({(h, q′) : q′ ∈ G′a})

⇔ (h, p′′) ∈ C(G(h,a));

the condition (12) is further equivalent to say that

p ∈ C(Gh,pt ), and ∀ a with (h, a) ∈ H(G), ∃ q ∈ C(G(h,a)) with p %′ q.

As G ∈ G with h ∈ H(G) is arbitrary, this shows that C is individually rational at the decision node h under
the preference relation %′. The equivalence (b)⇔(c) follows from Theorem 1 at once. �

Proof of Proposition 4. Suppose that condition (4) holds, and we shall write

D∗ B tran
( ⋃

h∈H′
%h

C

)
to reduce notation. Then, obviously, %h

C ⊆ D
∗ for every h ∈ H′. Moreover, for any h ∈ H′, if p �h

C q, then
we have p D∗ q (as %h

C ⊆ D
∗) and in addition not q D∗ p by the contrapositive of (4). Therefore, D∗ extends

%h
C for all h ∈ H′, Now, by Szpilrajn’s theorem (footnote 10), let % be a preference relation on X that extends
D∗. Then, for every h ∈ H′, the preference relation % rationalizes C at the decision node h as it extends %h

C .
(See the remark below Proposition 3.) The proof is complete. �

Proof of Theorem 5. Let C be a collectively rational choice correspondence on G. As noted in the remark
in Section 4.2, then there exists a sequence (%1,%2, . . .) of preference relations on X such that, for any t ≥ 1
and any h ∈ H of length t−1, C is individually rational at the decision node h under %t. Now, fix an arbitrary
G ∈ G and p ∈ C(G). We inductively define a map σ : H(G) 7→ G such that, for any t ≥ 1 and any h ∈ Ht(G),

(a) σ(h) ∈ C(Gh),

(b) σ(h, a∗) = σ(h) if a∗ is the tth term of σ(h),

(c) σ(h) %t σ(h, a) for all a ∈ A with (h, a) ∈ H(G).
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First, we define σ on H1(G) by setting σ(∅) = p. This way of setting σ obviously satisfies the condition (a)
above on H1(G). Then, for any t ≥ 1, assume that we have defined σ on H1(G) ∪ · · · ∪ Ht(G) in such a way
to meet the three conditions above whenever σ is defined. Take any h ∈ Ht(G). Since σ(h) ∈ C(Gh). and C
is individually rational at the decision node h under %t, we have

σ(h) ∈ C(G(h,a∗)), and for any a with (h, a) ∈ H(G), there exists a q ∈ C(G(h,a)) withσ(h) %t q, (13)

where a∗ is the tth term of the path σ(h). So, we set σ(h, a∗) = σ(h) ∈ C(G(h,a∗)) and, for any a , a∗ with
(h, a) ∈ H(G), σ(h, a) as a path in C(G(h,a)) such that σ(h) %t σ(h, a), the existence of which is assured by
(13). As h ∈ Ht(G) is arbitrary in this argument, this way we defined σ on Ht+1(G), and it follows from the
construction that σ satisfies the conditions (a)-(c) on H1(G) ∪ · · · ∪ Ht+1(G). Given the map σ on H(G) thus
obtained, we next define a strategy profile s : H(G) → H(G) in the game G by setting s(h) = (h, a∗) where
a∗ is the tth term of σ(h) for any t ≥ 1 and any h ∈ H(G) of length t − 1. The condition (b) of σ then implies
that s∞(h) = σ(h), and the condition (c) implies that s∞(h) %t s∞(h, a), for any t ≥ 1, any h ∈ H(G) of length
t − 1, and any a ∈ A with (h, a) ∈ H(G). So, s is an SPE profile, and p = σ(∅) = s∞(∅) ∈ SPE(G|%1,%2, . . .),
as claimed.

Next, maintaining the assumption that C is collectively rational under the sequence (%1,%2, . . .) of pref-
erence relations, we take an arbitrary G ∈ G that satisfies (5). Observe that, for any p ∈ G, the collective
rationality of C implies that

p ∈ C(Gpt−1 ) ⇒ p ∈ C(Gpt )

for all t ≥ 1, while (5) implies that Gpt = {p} and thus p ∈ C(Gpt ) for some t ≥ 1. Put together, it follows
that, for any p ∈ G, there exists τ(p) ≥ 0 such that

t < τ(p) ⇒ p < C(Gpt ),

t ≥ τ(p) ⇒ p ∈ C(Gpt ).

Now, fix any p ∈ SPE(G|%1,%2, . . .), and suppose that p < C(G) towards a contradiction. Then, τ(p) ≥ 1.
For simplicity, assume that τ(p) = 1, so that p < C(G) whereas p ∈ C(Gp1 ). (The proof works in the same
way without this assumption.) Since C is individually rational at the initial node, the fact that p is not chosen
in G while it is chosen in Gp1 implies that player 1 finds the path suboptimal. To be specific, there exists
a , p1 with a ∈ H(G) such that

q ∈ C(Ga) ⇒ q �1 p. (14)

However, since p is an SPE path in G, there must exist an SPE path p′ ∈ SPE(Ga|%1,%2, . . .) in the con-
tinuation game Ga such that p %1 p′. Then, by (14), p′ < C(Ga). In summary, we began from the path
p ∈ SPE(G|%1,%2, . . .) \ C(G) and verified the existence of a path p′ ∈ SPE(Gh|%1,%2, . . .) \ C(Gh), distinct
from p, in a continuation game Gh of G. But then, by repeating the same logic to the path p′, we can find
a path p′′ ∈ SPE(Gh′ |%1,%2, . . .) \ C(Gh′ ), distinct from p′, in a continuation game G′h of Gh. By induction,
therefore, we can show that there exists a sequence ψ : N→ G of distinct paths in G such that ψ(m)n = ψ(n)n

whenever m > n.11 Now, define q = (ψ(1)1, ψ(2)2, ψ(3)3, . . .). Then, by the closedness property in the defi-

11Reminder: we denote, for any path p ∈ X, by pt the tth term of p and by pt = (p1, . . . , pt) the first t terms of p. As
these notations are reserved, we here use a map ψ : N → G to represent a sequence of paths. This sequence is simply
constructed by ψ(1) = p, ψ(2) = p′, ψ(3) = p′′, and so on, in this proof.

24



nition of sequential games, we have q ∈ G. Yet, for any t ≥ 1, q , ψ(t) ∈ Gqt , which violates the hypothesis
(5). A necessary contradiction is established.

Lastly, suppose that C is a choice correspondence onG such that C(G) = SPE(G|%1,%2, . . .) for all G ∈ G
under a sequence (%1,%2, . . .) of preference relations on X, In this proof, we show that C is individually
rational at the initial node. (Given that C coincides with the choice of the SPE paths in all games in G, which
includes all continuation games, the same logic works to show that C is individually rational at an arbitrary
decision node.) Fix any G ∈ G, and assume that p ∈ C(G), that is, the condition (a) in the definition of the
individual rationality. Then, there exists a strategy profile s in G such that p = s∞(∅) and

s∞(h) %t s∞(h, a) (15)

for any t ≥ 1, any h ∈ H(G) of length t − 1, and any a ∈ A with (h, a) ∈ H(G). For any a ∈ H2(G), define

sa(h) =

a if h = ∅,

s(h) otherwise.

(This is a strategy profile where all but player 1 follow s while player 1 plays the action a at the initial node.)
It follows from (15) that sa is an SPE strategy profile in Ga. Moreover, s∞a (∅) = s∞(a) for all a ∈ H2(G), and,
in particular, s∞p1

(∅) = s∞(p1) = s∞(∅) = p. Since sp1 is an SPE in Gp1 , we have p = s∞p1
(∅) ∈ C(Gp1 ). Also,

for any a ∈ H2(G), since sa is an SPE in Ga, s∞(a) = s∞a (∅) ∈ C(Ga). Then, by applying (15) with t = 1 and
h = ∅, we have

p = s∞(∅) %1 s∞(a)

for all a ∈ H2(G). This completes to verify the condition (b). Conversely, suppose that p ∈ C(Gp1 ), and for
any a ∈ H2(G), there exists a q ∈ C(Ga) with p %1 q. Then, there exists a strategy profile sp1 in Gp1 such
that p = s∞p1

(∅) and
s∞p1

(h) %t s∞p1
(h, b) (16)

for any t ≥ 1, any h ∈ H(Gp1 ) of length t − 1, and any b ∈ A with (h, b) ∈ H(Gp1 ). Also, for each a ∈ H2(G)
distinct from p1, there exists a stretegy profile sa in Ga such that p %1 s∞a (∅) and

s∞a (h) %t s∞a (h, b) (17)

for any t ≥ 1, any h ∈ H(Ga) of length t − 1, and any b ∈ A with (h, a) ∈ H(Ga). We define a strategy profile
s in G by

s(h) =

sp1 (h) if h = ∅ or h1 = p1

sh1 (h) otherwise.

Then, s∞(∅) = s∞p1
(∅) = p %1 s∞a (∅) = s∞(a) for all a ∈ H2(G). Also, (16) and (17) imply that

s∞(h) = s∞h1
(h) %t s∞h1

(h, b) = s∞(h, b)

for any t ≥ 2, any h ∈ H(G) of length t − 1, and any b ∈ A with (h, b) ∈ H(G). Hence, s is an SPE in G, and
p = s∞(∅) ∈ C(G), as we sought. �
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A.2 Independence of the axioms

Only A1, but neither A2 nor A3, has implications on C(G) for games G ∈ Gwith |H2(G)| ≥ 3 and |Ga| ≥ 2 for
each a ∈ H2(G). So, for example, let X = {(a, b, ∅, . . .) : a ∈ {1, 2, 3}, b ∈ {1, 2}}, and define the lexicographic
relation %L on X by

(a, b, ∅, . . .) %L (a′, b′, ∅, . . .) ⇐⇒ either a > a′ or (a = a′ and b ≥ b′).

Then, a choice correspondence C on G such that

C(G) =

{(1, 1, ∅, . . .)} if G = X,

{p ∈ G : p %L q for all q ∈ G} otherwise,

satisfies A2 and A3, but not A1. For A2, let 0 = (0, ∅, . . .), x = (1, x, ∅, . . .), y = (1, y, ∅, . . .), and X = {0, x, y}.
Define a choice correspondence C on G by

C({0, x}) = {x}, C({0, y}) = {0}, C({x, y}) = {x, y}, C({0, x, y}) = {x}.

Then, C satisfies A1 and A3, but not A2. In particular, it violates A2 since 0 < C({0, x, y}) while 0 ∈ C({0, y})
and y ∈ C({x, y}) = C({0, x, y}1). For A3, let X = {x0, y0, x1, y1}, where x0 = (0, x, ∅, . . .), y0 = (0, y, ∅, . . .),
x1 = (1, x, ∅, . . .), and y1 = (1, y, ∅, . . .). Define a choice correspondence C on G by

C({x0, x1}) = {x1}, C({x0, y1}) = {x0}, C({y0, x1}) = {y0}, C({y0, y1}) = {y1} (18)

and

C({x0, y0}) = {x0}, C({x1, y1}) = {x1},

C({x0, y0, x1}) = {x1}, C({x0, y0, y1}) = {x0}, C({x0, x1, y1}) = {x1}, C({y0, x1, y1}) = {y0},

C({x0, y0, x1, y1}) = {x1}.

Then, C satisfies A1 and A2, but not A3. In particular, the four conditions in (18) violate A3.
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