
Preference Structures∗

Hiroki Nishimura† Efe A. Ok‡

April 21, 2020

Abstract

We suggest using two binary relations to describe the preferences of a rational economic
agent. The first of these is transitive and captures the comparisons that the decision
maker is able to make easily, perhaps because it reflects the joint rankings of a committee
of experts, or because it agrees with the preferences of all of her potential selves, or because
these are those comparisons that just seem “obvious” to her. The second one arises from
what we observe the agent choose in the context of pairwise choice problems. As such, it is
assumed to be complete, but not necessarily transitive. Imposing two natural consistency
conditions on these relations yields what we call a preference structure. It is shown that
this model allows for phenomena like rational choice, indecisiveness, imperfect ability
of discrimination, regret, and advise taking, among others. Our main goal is to study
the choice behavior that arises from preference structures which we model by using the
notion of top-cycles. We find that this leads to a rich theory of choice with a considerable
explanatory power, and still with a surprising amount of predictive power. The two
main issues we focus on here is the existence of choice, and the recoverability of one’s
(unobservable) core preference relation from choice data. We find that the choice theory
developed here, while much more general, possesses existence and uniqueness properties
that parallel those of the classical theory of rational choice.
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1 Introduction

The classical way of describing the preferences of an economic agent on a given set
X of choice prospects is to use a binary relation on X. If, according to this relation,
a prospect x is ranked higher than another prospect y, we understand that the agent
prefers having x to having y. To get some mileage from the model, one typically imposes
some properties on this binary relation, often corresponding to a form of rationality on
the part of the agent. In the most standard scenario, of course, we posit that this relation
is complete and transitive, and then describe the items that the agent finds choosable
from a given feasible menu as those that maximize it.

This model is not only elegant, but it also possesses an admirable degree of predic-
tive power. However, its explanatory power is known to be limited. The experimental
demonstrations of nontransitivity of revealed preferences of individuals, for instance, go
back to Tversky (1969), which is to cite but one reference from a rather large litera-
ture (cf. Loomes and Day (2010)). Besides, numerous explanations and models that
accommodate nontransitivity of preferences are offered in the literature, including re-
gret theory (Loomes and Sugden (1982)), nontransitive indifference and similarity (Luce
(1956), Fishburn (1970), Beja and Gilboa (1992), and Rubinstein (1988)), and framing
effects (Kahneman and Tversky (1979) and Salant and Rubinstein (2008)). Similarly, if
we wish to model the occasional indecisiveness of an agent, then the completeness hy-
pothesis has to be dropped (as in, say, models of multi-criteria decision making and/or
Knightian uncertainty). Moreover, if the economic agent under consideration is, in fact,
a group of individuals (such as a board of directors or a family), then positing com-
pleteness and transitivity at the outset is not at all warranted. After all, the two most
standard binary relations that are relevant in this case are the Pareto ordering (which
is incomplete) and the majority voting rule (which is nontransitive).

One reason why the classical model of preferences lacks in explanatory power is
that this approach tacitly views that all pairwise choice problems are evaluated in the
same way. Yet, it is simply unrealistic to presume that every choice problem is equally
revealing. Depending on the context, some choices may be “easy,” even “trivial,” for
an agent, while others may be “hard” enough that she may feel justifiably insecure
about them. For instance, most agents would choose the sure lottery that pays them
$10 over the one that pays $5 “easily,” while they may find ranking two complicated
lotteries “difficult.” Or, when a committee of experts tell the agent, unanimously, that
alternative x is better than y, the agent is likely to regard deciding between x and y
an “easy” problem, but if some of the experts favor x and others y, the problem may
well become “hard.” Similarly, comparing two social policies would be easy for a social
planner when there is unanimous agreement about these policies in the society, but the
choice problem may become “difficult” if some people back one policy, and the others
desire the alternate.

The upshot is that the choices of a decision maker across (subjectively) “hard” choice
problems may fail the strict requirements of rationality, and hence reveal a preference
relation that is not transitive. (This is a well-known viewpoint in the literature; see,
among others, Mandler (2005) for a formal treatment of it, and Costa-Gomes et al.
(2019) for empirical support.) By contrast, the choices across “easy” pairwise choice
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problems (whichever these may be for the agent) would presumably abide by transitivity.
But, unless all such problems are “easy” for the agent, these yield an incomplete ordering
of the choice prospects.

While this description is quite simple, and apparently realistic, it cannot be captured
by the classical approach of modeling one’s preferences by means of a binary relation.
In this paper, we instead propose a broader, alternative approach of modeling the pref-
erences of a rational decision maker. This approach is built on two binary relations on
X. The first of these, denoted as %, captures the rankings that the agent is perfectly
comfortable with. As it is unlikely that a rational agent would exhibit a cyclical choice
pattern across pairwise choice problems that she can “easily” solve, we assume % is re-
flexive and transitive, but not necessarily complete. The second binary relation, denoted
as R, arises from what we observe the agent choose in the context of all pairwise choice
problems. (Thus % may not be observable, but R is.) As it is generated also by “hard”
choice problems, we allow R be nontransitive, but, naturally, we assume it is complete.
Put precisely, when x R y, it is understood that an outside observer has seen the agent
choose x over y from the menu {x, y} at some point.

As % and R are meant to describe the preferences of a “rational” person, they must
be consistent with each other. We thus assume at the outset that both the weak and
strict parts of R extend those of %, respectively. That is, if the agent is certain that x
and y are perfect substitutes for her – this is captured by the core relation % declaring
x and y indifferent – then the revealed preference R maintains that x and y are indeed
indifferent. Similarly, if the agent thinks x is “obviously” strictly better than y – this is
captured by % ranking x strictly above y – then R reveals precisely this.

Our interpretation suggests that the connection between % and R should be even
tighter than this. To wit, suppose xR y and y % z for some alternatives x, y and z. Thus,
the agent declares x superior to y (although she may not be completely confident in this
judgement) while she is sure that y is better for her than z. It then seems reasonable
that the agent would prefer x over z, albeit, she may be insecure about this decision
(that is, x R z holds, but not necessarily x % z). As the analogous reasoning applies
also to the case where x % y and y R z, it makes sense to require R be transitive with
respect to %, which means

x R y % z or x % y R z implies x R z

for every x, y and z in X.
This property provides further discipline for the preference model at hand. Put

precisely, this model, which we refer to as a preference structure on X, is a pair of binary
relations (%,R) on X such that (i) % is reflexive and transitive, (ii) R is complete, (iii)
R is an extension of % (in terms of both indifference and strict preference) and (iv) R
is transitive with respect to %. Evidently, this model reduces to the classical one when
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% = R, but in general, it is much richer.1’2

In the body of the paper, we provide a large number of examples that highlight
the coverage of preference structures. In addition to the classical rational choice model,
among these are the models of incomplete preferences, preferences with imperfect ability
of discrimination, regret preferences, and preferences completed by the recommendations
of a consultant (Sections 3.2-3). We then prove that for any preference structure (%,R),
there is a set of preorders such that % is realized as the intersection of this set and R
as the union of it (Section 3.4). Thus, the first component of any preference structure
is a unanimity ordering, while the second component of it is a rationalizable preference
in the sense of Cherepanov et al. (2013).

Our main findings are reported in Sections 4 and 5. In Section 4, we consider how
one may think of an agent making her choices on the basis of her preference structure.
That is, we define the set C(S) of all possible choices of an economic agent from a given
feasible menu S by using a preference structure. In the classical case, this is done by
setting C(S) as the set of all maximum elements of S with respect to the preference
relation of the agent. The situation is less clear cut in the context of an arbitrarily
given preference structure (%,R). What readily follows from our interpretation is that
the agent would never choose an alternative x from S if there is another alternative in
S that strictly dominates x in terms of the “sure” ordering %. Thus, C(S) must be
contained in MAX(S,%), the set of all maximal elements in S with respect to %. We
then posit that the “choosable” alternatives in S should “maximize” R on MAX(S,%).
Unfortunately, as R need not be transitive, there is no a priori reason for the existence of
such maxima, even when S contains only three alternatives. This is a problem familiar
from social choice theory, and it is often addressed by using an alternative notion of
optima, such as the top-cycle solution, the uncovered set, the Banks set, etc.. We
adopt the first of these here, and set C(S) as the top-cycle in MAX(S,%) with respect
to R.3 This generalizes the rational choice paradigm (because, when % = R, this
specification makes C(S) the set of all maxima relative to %). In addition, it captures
many interesting choice frameworks, among which are the models of rational choice with
incomplete preferences, some satisficing models such as choice with constant thresholds,
and certain types of sequentially rational choice procedures (Section 4.5). Yet, it is not
meant to be a boundedly rational choice model; it is certainly not primed to capture
phenomena like the attraction effect, limited attention, choice overload, status quo bias,
etc.. It is, instead, a model that extends the coverage of the standard rational choice
model at a foundational level, and as we shall see, one that retains a considerable amount

1Relaxing (iii) to % ⊆ R here leads to what we call weak preference structures. While their in-
terpretation is less appealing, such structures are also of interest. First, as we shall see, any weak
preference structure can be turned into a proper preference structure without affecting the associated
choice behavior. Second, there are quite a number of specific preference models in the literature that
violate (iii), but nevertheless fit to the mold of a weak preference structure.

2While uncommon, describing preferences through two binary relations instead of one is not new;
the way our model is situated in the existing literature is explained at the end of Section 3.1. At the
outset, however, we should note that we are not aware of any work that develops a choice theory on
the basis of such a preference model, which is the primary focus of our work.

3Put precisely, C(S) is the smallest subset of MAX(S,%) such that every element in this set is
ranked strictly higher than every %-maximal element outside this set with respect to R.
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of predictive power (Section 4.6).
There are three major theoretical queries that any choice theory that shoots for

acting as a foundational model, has to respond to. These concern the issues of existence,
uniqueness, and behavioral characterization. We discuss these in turn.

(I) Existence of Choice. A choice theory without having good existence properties is
unlikely to be universally appealing. This is a primary concern for any preference model
that allows for nontransitive binary choice patterns; indeed, it is one of the main reasons
why nontransitive preferences are rarely used in economic models. In Section 4.3, we
prove that the existence properties of the present choice model matches those of the
rational choice model exactly. As our first main theorem, we show that under the usual
compactness and continuity hypotheses, any choice correspondence that is rationalized
by a preference structure is sure to be nonempty-valued.

(II) Recoverability of the Underlying Preference Model. This issue concerns the
uniqueness of a preference model that underlies a given choice theory. The rational
choice model is, trivially, on impeccable footing in this front; a rational choice corre-
spondence can be rationalized by exactly one preference relation.4 The situation is far
more complicated in the case of the choice theory developed in this paper. Suppose C
is the observed choice correspondence of a person, and assume that it is rationalized by
some (unknown) preference structure (%,R). The question is if we can elicit the agent’s
preference structure from C, at least to an extent. This is a fundamental query, because
the core preference relation of the agent is unobservable, but it is this part of the prefer-
ence structure of the agent that matters most for welfare analysis (in the sense of, say,
Bernheim and Rangel (2007, 2009)).

Section 5 is devoted entirely to this query. We first observe that the revealed pref-
erence part R of agent’s preference structure is uniquely identified from her choice cor-
respondence C; this parallels the situation in classical rational choice theory. Next, we
prove that while there may well be a multitude of (incomplete) preference relations that,
when coupled with R, would rationalize C, the set of all such (core) preferences – we
denote this set by P(C) – possesses an unexpected structure. Our second main result in
this paper shows that any collection of such preferences can be combined into a single,
more decisive, preference relation which, when coupled with R, rationalizes C. More-
over, there is a most decisive preference structure in P(C). This relation – let us call
it %C – is the most complete preference relation such that (%C ,R) rationalizes C. It is
of obvious interest, because it is the preorder that allows us make unambiguous welfare
comparisons for the agent most frequently, and it is perfectly observable.

This is, however, a theoretical result; existence of a most complete element in P(C)
is one thing, computing it by using C explicitly is another. Fortunately, there is a simple
characterization of %C ; this is the third main result of our paper (Section 5.1). It turns
out that the strict part of this relation corresponds precisely to the Bernheim-Rangel
criterion (that is, x �C y iff y is never chosen in a feasible set that contains x), while its
symmetric part renders two alternatives indifferent iff these alternatives are behaviorally
equivalent in the sense of Eliaz and Ok (2006) and Riberio and Riella (2017). In sum,

4This statement presumes that the choice domain (the set of all feasible sets) is sufficiently rich; as
formalized later, we operate under this hypothesis thoughout the paper.
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from any choice correspondence rationalizable by a preference structure we can explicitly
elicit the preference structure (i) which rationalizes that correspondence; and (ii) whose
“sure” preferences exhibit the least amount of indecisiveness compatible with that choice
correspondence.5

(III) Behavioral Axiomatic Characterization. The overall approach we adopt in this
paper is that of behavioral economics. We outline a theory of preferences and choice,
demonstrate how this theory extends the coverage of the classical theory by means
of a large set of examples, derive basic implications of this theory, and work out its
existence and uniqueness properties. An alternative, complementary approach would
be that of axiomatic decision theory. This would ask for the determination of the
behavioral content of our choice theory in terms of a complete axiomatic system. Put
precisely, this approach would require us identify a set of (behavioral) axioms for a
choice correspondence C (each being weaker than the classical Weak Axiom of Revealed
Preference) that are necessary and sufficient for C to be rationalizable by some preference
structure. This would fully characterize the predictive content of the choice model,
thereby providing one with methods of testing the model experimentally. We regard
this approach essential, to be sure. However, given the already sizable length of the
present paper, we cannot adopt it here. A complete characterization of our choice
model in the tradition of revealed preference theory is, instead, provided in a separate,
companion paper by Evren, Nishimura and Ok (2019).

All proofs that are omited in the main text are contained in the Appendix.

2 Nomenclature

As we deal with somewhat nonstandard preference relations in this paper, we introduce
here some terminology that pertains to the general theory of binary relations on an
arbitrarily given nonempty set X.

Binary Relations. By a binary relation on X, we mean any nonempty subset of
X × X. But, for any binary relation R on X, we often adopt the usual convention of
writing x R y instead of (x, y) ∈ R. For any nonempty Y ⊆ X, by x R Y, we mean x R
y for every y ∈ Y . Moreover, for any binary relations R and S on X, we simply write
x R y S z to mean x R y and y S z, and so on. For any nonempty subset S of X, the
restriction of R to S is defined as the binary relation on S given by

R|S := R ∩ (S × S).

For any element x of X, the upper set of x with respect to R is defined as x↑,R :=
{y ∈ X : y R x}, and the lower set of x with respect to R is x↓,R := {y ∈ X : x R y}.
When either x R y or y R x, we say that x and y are R-comparable, and put

Inc(R) := {(x, y) ∈ X ×X : x and y are not R-comparable}.
5Under standard compactness conditions on the choice domain, one can also determine the least

decisive “sure” preferences of the agent from her choice behavior. This is explored in Section 5.2.
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This set is symmetric, that is, (x, y) ∈ Inc(R) iff (y, x) ∈ Inc(R). If Inc(R) = ∅, we say
that R is complete (or total).

The asymmetric (or strict) part of a binary relation R on X is defined as the
binary relation R> on X with x R> y iff x R y and not y R x, and the symmetric
part of R is defined as R= := R\R>. The composition of two binary relations R and
S on X is defined as R ◦ S := {(x, y) ∈ X × X : x R z S y for some z ∈ X}. We say
that S is a subrelation of R, and that R is a superrelation of S, if S ⊆ R.

We denote the diagonal of X ×X by 4X , that is, 4X := {(x, x) : x ∈ X}. A binary
relation R on X is said to be reflexive if 4X ⊆ R, antisymmetric if R= ⊆ 4X ,
transitive if R ◦R ⊆ R, and quasitransitive if R> is transitive. If R is reflexive and
transitive, we refer to it as a preorder on X. (Throughout the paper, generic preorders
are denoted as % or D, and the asymmetric parts of % and D are denoted as � and B,
respectively.) Finally, an antisymmetric preorder on X is said to be a partial order on
X. If X is endowed with a prespecified partial order, we may refer to it as a poset.

The transitive closure of a binary relation R on X is the smallest transitive super-
relation of R; we denote this relation by tran(R). This relation always exists; we have
x tran(R) y iff there exist a k ∈ Z+ and x0, ..., xk ∈ X such that x = x0 R x1 R · · · R
xk = y. Obviously, tran(R) is a preorder on X, provided that R is reflexive.

Extension of Binary Relations. Let R be a binary relation on X. If S and S> are
subrelations of R and R>, respectively, we say that R is an extension of S (or that R
extends S). If R extends S and it is total, we refer to it as a completion of S.

Transitivity with Respect to another Binary Relation. Our main focus in this paper
is on reflexive, but not necessarily transitive, binary relations. A useful concept in the
analysis of such binary relations is the notion of transitivity with respect to a binary
relation. Put precisely, given any two binary relations R and S on X, we say that R is
S-transitive if R ◦ S ⊆ R and S ◦R ⊆ R, which means that either x R y S z or x S
y R z implies x R z for any x, y, z ∈ X. This notion generalizes the classical concept of
transitivity, for, obviously, R is R-transitive iff it is transitive.

The Transitive Core. Let R be a reflexive binary relation on X. By the transitive
core of R, we mean the largest subrelation S of R such that R is S-transitive, and
denote this subrelation as T(R). It is plain that R is transitive iff R = T(R). A folk
theorem of order theory says that T(R) exists, it is a preorder, and it satisfies: x T(R)
y iff x↑,R ⊆ y↑,R and y↓,R ⊆ x↓,R (cf. Cerreia-Vioglio and Ok (2018).) In order theory,
especially in the context of interval orders, T(R) is sometimes called the trace of R (cf.
Doignon et al. (1986)). Here we instead adopt the terminology of Nishimura (2018) who
has recently provided an axiomatic characterization of the operator T.

3 Preference Structures

3.1 Introduction

Let X be a nonempty set which we take as the collection of all mutually exclusive
choice prospects for an economic agent (who may itself be a collection of individuals,
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such as a board of directors, congress, or a family). This agent is entirely confident in
the preferential ranking of some of the alternatives in X. We model these rankings by
means of a binary relation % on X. So, when x % y for some x, y ∈ X, we understand
that the agent is “sure” that x is better than y for her. Of course, % is unobservable
(because we do not know when an agent is “sure” about her preferential rankings), but
our interpretation mandates % be (reflexive and) transitive: If x is surely better than y,
and y is surely better than z, it makes sense that x will be deemed surely better than z.
However, and this is where the present theory begins to deviate from the standard theory
of rational decision-making, there is no need for % to be complete. The agent may well
find the comparison of some alternatives “difficult,” an entirely realistic phenomenon.6

Suppose the agent is unable to rank two alternatives x and y with respect to %.
When confronted with the problem of choosing between x and y, one will nevertheless
observe her make a decision.7 So, in the case of this choice problem, if she chooses x over
y, we say that “x is revealed preferred to y,” and if we have somehow witnessed that she
choose x over y at some observation point, and y over x in some other, we say that “x
is revealed indifferent to y.” As such, we model all pairwise rankings of the individual,
“easy” ones as well as the “hard” ones, by means of a binary relation R on X (which
is observable). The very interpretation of R mandates it be complete. However, it is
only natural that “hard choices” may not act transitively: If the agent has chosen x
over y with great difficulty, and was also conflicted about her choice between y over z,
but has nonetheless chosen y over z, then it may well be the case she choose z over x
(again with difficulty). This not only rings true by daily introspection, but is verified by
numerous experimental studies (on the nontransitivity of preferences). Moreover, if our
economic agent consists of a set of individuals, then even the most standard methods of
aggregating constituent preferences (such as majority voting) may result in the revelation
of nontransitive rankings of the alternatives.

These considerations suggest that we model the “preferences” of an economic agent
by means of an ordered pair (%,R) of binary relations on X such that % is a preorder
and R is complete. Moreover, these relations should be consistent in the sense that
x % y implies x R y; this simply means that if x is “surely” at least as desirable as y
for the agent, we would observe her choose x over y. Put succinctly, our interpretation
of things very much suggests that R be a superrelation of %.

As a matter of fact, it makes sense to ask R act in coherence with % in a way
that goes beyond this property. Suppose our agent declares that x R y and y % z for
some alternatives x, y and z. We interpret this as saying that the agent likes x better
than y, even though she may well be somewhat insecure about this decision, while she

6For example, the agent may be employing a committee of experts to help her in her decision making,
or she may be a social planner on behalf of a collection of individuals (each with her own preference
relation). In either of these cases, % may correspond to the rankings of the alternatives according to
the unanimity (Pareto) rule. When the unanimity ranking works, the comparisons are “easy,” but of
course, there may be many cases in which this ranking does not apply. (See Example 3.6 below.)

7In principle, the agent may “choose” not to make a choice, but this necessitates that at least some
pairwise choice problems (those that do not include the option of not choosing) to be designated as
unobservable situations. As formalized later, we abstract away from such contingencies here by tacitly
allowing all pairwise choice situations within our framework.
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prefers y over z in complete confidence. But then it stands to reason that the “obvious”
superiority of y over z for this agent would entail that she would like x better than z,
but, of course, it is possible that she may not be secure in this judgement either (that
is, x R z holds, but not necessarily x % z). Consequently, and since the same reasoning
applies when x % y R z as well, it makes good sense to require % and R to satisfy the
following:

x R y % z or x % y R z implies x R z

for all x, y, z ∈ X. Put succinctly, we posit R be %-transitive. This property is not only
reasonable, but it also brings some discipline to the model, and allows us to learn quite
a bit about % (which is unobservable) from R (which is observable).

These considerations prompt the following:

Definition. An ordered pair (%,R) is a weak preference structure on a nonempty
set X if % is a preorder on X and R is a %-transitive and complete superrelation of %
on X. In this context, we refer to % as the core preference relation of the structure,
and to R as its revealed preference relation.

There are two (non-nested) special cases of the notion of a weak preference structure
(%,R) that are of immediate interest. The first one of these strengthens the connection
between the core and revealed preferences by requiring R be an extension of %. This
amounts to requiring x � y imply x R> y (in addition to % ⊆ R), that is, if x is “surely”
strictly better than y for the agent, then she would never choose y over x.8 The second
one keeps the connection between % and R as is, but require R itself be transitive. This
model embodies a lot of rationality within, but as we shall see, it still entails a choice
theory distinct from the classical rational choice theory. Furthermore, many instances of
this version of weak preference structures have already been considered in the literature.

Definition. A weak preference structure (%,R) on a nonempty set X is said to be a
preference structure on X, provided that R is a completion of %.9 In turn, a (weak)
preference structure is said to be a transitive (weak) preference structure on X, if
R is transitive.10

Our immediate task is to highlight the relation between weak preference structures
and some similar constructs found in decision theory, as well as providing several concrete
examples. We will turn to developing a theory of choice based on preference structures
in Section 4.

8This requirement is only natural. For, suppose % ⊆ R holds, but � ⊆ R> fails. Then, even though
it is “obvious” to the agent that x is strictly better than y (that is x � y), we may have x R= y which
means that the agent could choose y over x at some point. For instance, where x is $1000 and y is $0,
and most agents would “surely” rank the former strictly over y, we would then allow the agent reveal
herself to be indifferent between $1000 and $0. Similarly, when the economic agent is the coalition of,
say, ten individuals, all ten of whom vote for x over y, without the extension requirement, the model
would permit the coalition be declared indifferent between x and y.

9In what follows, when we wish to emphasize that a preference structure is not weak, we will refer
to it as a proper preference structure.

10Put simply, a transitive weak preference structure on X is an ordered pair (%,R) where % and R
are preorders on X such that % ⊆ R and R is complete.
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Relation to the Literature. Modeling individual preferences by means of two binary
relations, one incomplete and the other complete, is not new in decision theory. Espe-
cially in the literature on decision making under uncertainty, this method is employed
by a number of studies. For example, in the Anscombe-Aumann framework, Gilboa et
al. (2010) have used two binary relations, the first being a preorder (à la Bewley (1986))
and the second a complete preorder (à la Gilboa and Schmeidler (1989)). In the jargon
introduced above, this model is a weak transitive preference structure.

There are only few studies that employ two binary relations to model individual
preferences in our general setup. Both Mandler (2005) and Danan (2008) suggest dis-
tinguishing between one’s core preferences – Mandler refers to these as psychological
preferences, and Danan as cognitive preferences – from her revealed preferences. The
model of Mandler (2005), whose outcome space is restricted to be an open subset of
Rn

+, is, essentially, a special type of preference structure – see Example 3.3 below – but
Mandler’s emphasis is on sequential, nontransitive choice that is nevertheless consistent
with the core preferences. By contrast, Danan’s model is of the form (%,R), where
% and R are binary relations on (a topological space) X such that both % and R are
complete, and � ⊆ R>. Danan uses this model to suggest a method of understanding
when an individual who has been observed to choose an alternative x over y is, in fact,
indifferent between x over y. Notably, his model is a preference structure iff % = R,
that is, in the intersection of our model and Danan’s lies only the classical model of
(complete and transitive) preferences.

The two papers that are most closely related to the present work are Giarlotta and
Greco (2013) and Giarlotta and Watson (2018). Both of these papers work with a weak
preference structure (%,R) on X. (The latter paper refers to such a structure as a
complete bi-preference.) Giarlotta and Greco (2013) impose the following additional
requirement on this model: For any two alternatives x and y, either x % y or y R
x. This model, which is called the necessary and possible preference on X, declares
any two alternatives that are “hard” to compare as revealed indifferent. As such, it
appears rather restrictive to serve as a general model of individual preferences (but
it has been useful in multi-criteria decision analysis; see Giarlotta (2018) for a survey
on this matter.) On the other hand, Giarlotta and Watson (2018) consider, instead,
imposing the (mutually exclusive) requirements � ⊆ R> or R> ⊆ � on (%,R). In their
jargon, the first requirement leads to monotonic complete bi-preferences and the second
to comonotonic complete bi-preferences. While the former model is identical to what
we define here as preference structures, Giarlotta and Watson (2018) instead focus on
exploring the structure of the latter model which is, to use their words, “quite different
from that of a monotonic bi-preference, being more related to decision analysis and
operations research rather than choice theory.”

The main focus of the present paper is explore how preference structures could be
used to model the “choices” of an agent in a way that generalizes the classical rational
choice theory, and several of its variants. We are not aware of any work that studies this
issue.
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3.2 Examples

Unless stated otherwise, X stands for an arbitrary nonempty set in the following ex-
amples. Our aim in this section is to demonstrate the breadth of the model of (weak)
preference structures.

Example 3.1. Let % be a complete preorder on X. Then, (%,%) is a transitive prefer-
ence structure on X. (Every complete preference relation may thus be thought of as a
preference structure.)

Example 3.2. Let R be a total binary relation on X. Then, (4X ,R) is a preference
structure on X. (Every total binary relation may thus be thought of as a preference
structure.)

Example 3.3. Let % be a preorder on X. If R stands for % ∪ Inc(%), then (%,R) is a
preference structure on X. (This is, essentially, the model Mandler (2005) has considered
in the context of consumer choice.)

Example 3.4. (Aggregation by Social Welfare Criteria) Fix a positive integer n, and let
ui be a real map on X for each i = 1, ..., n. Define a preorder % by x % y iff ui(x) ≥ ui(y)
for each i = 1, ..., n, and the binary relations R1, R2, and R3 on X by

xR1 y iff
n∑

i=1

ui(x) ≥
n∑

i=1

ui(y),

xR2 y iff min
i=1,...,n

ui(x) ≥ min
i=1,...,n

ui(y),

and
xR3 y iff max

i=1,...,n
(ui(x)− ui(y)) ≥ 0,

respectively. We may think of % here as a Pareto ordering, while R1 and R2 correspond
to the utilitarian and Rawlsian social welfare criteria, respectively. By contrast, R3,
which often is nontransitive, is best viewed as a justifiable preference (to borrow the
jargon used by Lehrer and Teper (2011)). It is readily checked that (%,Ri) is a weak
preference structure on X for each i = 1, 2, 3. In fact, (%,R1) is a transitive preference
structure, while (%,R2) is a transitive weak preference structure (but it need not be a
preference structure). By contrast, (%,R3) need not be a preference structure, nor need
it be transitive.

Example 3.5. (Aggregation by Majority Voting) Let P be a nonempty finite family of
total preorders on X. Then,

⋂
P is the Pareto ordering induced by this collection. In

turn, we define the (majority voting) binary relation Pmaj on X as

x Pmaj y iff |{%∈ P : x � y}| ≥ |{%∈ P : y � x}|

for every x, y ∈ X. Then, (
⋂
P ,Pmaj) is a preference structure on X.
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Example 3.6. (Cautious Expected Utility Theory) Let I be a compact interval, and
X the collection of all Borel probability measures on I. Take any nonempty collections
U and V of continuous and strictly increasing real maps on I, and consider the binary
relation %U on X defined by

p %U q iff

∫
X

udp ≥
∫
X

udq for every u ∈ U .

In the terminology of Dubra, Maccheroni and Ok (2004), therefore, % is a preorder on X
that admits an expected multi-utility representation. Next, consider the binary relation
RV on X defined by

p RV q iff inf
u∈V

(∫
X

udp

)
≥ inf

u∈V

(∫
X

udq

)
.

In the terminology of Cerreia-Vioglio, Dillenberger and Ortoleva (2015), RV is a complete
preorder on X that admits a cautious expected utility representation. When these two
representations use the same set of utility functions, they become consistent with each
other. That is, (%U ,RU) is a transitive weak preference structure on X. This need not
be a preference structure, however.

Example 3.7. (Preferences with Imperfect Discrimination) Let R be a complete and
quasitransitive binary relation on X. Then, (4X tR>,R) is a preference structure on
X. This model allows us to capture the utility model of imperfect discrimination which
goes back to Armstrong (1939) and Luce (1956), and is studied more recently by Beja
and Gilboa (1992), among others. To wit, let u : X → R be any function and take any
real number ε ≥ 0. Define the binary relation R on X as x R y iff u(x) ≥ u(y)− ε. This
is a complete and quasitransitive binary relation on X with x R> y iff u(x) > u(y) + ε
and x R= y iff |u(x)− u(y)| ≤ ε. (The idea is that the agent does not discriminate
between alternatives whose utility values are close enough; Luce (1956) thus refers to
ε as the just noticeable difference.) Then, (%,R) is a preference structure on X where
% is the semiorder on X defined by x % y iff either x = y or u(x) > u(y) + ε. The
interpretation is that the pairwise ranking of any two alternatives is an “easy” one if the
utilities of these alternatives are sufficiently (that is, more than ε) distinct, and “hard”
otherwise.

Example 3.8. (Preferences with Regret) Let n be any positive integer, and p := (p1, ..., pn)
a probability vector with pi > 0 for each i. Consider an environment in which there are
n many states of the world, and state i obtains with probability pi. We put X := Rn,
and interpret any x := (x1, ..., xn) ∈ X as a state-contingent claim that pays xi dollars
at state i. Let % be the preorder defined by x % y iff xi ≥ yi for each i = 1, ..., n. (Thus,
when x % y holds, x is an obviously better prospect than y.) Now let u : R → R and
Q : R → (−1, 1) be strictly increasing functions with u(0) = 0. Furthermore, assume
that Q is odd (i.e., Q(−a) = −Q(a) for every a ∈ R), and convex on R+. We define the
binary relation R on X as

x R y iff
n∑

i=1

piQ (u(xi)− u(yi)) ≥ 0.
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This relation, due to Loomes and Sugden (1982), is known as a regret preference; it ranks
prospects on the basis of their aggregate regret/rejoice due to the (utility) difference
between the realized rewards. When n ≥ 3 and Q is strictly convex on R+, R is not
transitive, but it is always complete. In fact, it is easy to check that (%,R) is a preference
structure on X.

The following example is a generalization of the previous one.

Example 3.9.11 (Intra-Dimensional Comparison Heuristics) Let n be any positive in-
teger, and consider an environment in which every commodity is modeled through n
attributes. We thus put X := Rn, and interpret any x := (x1, ..., xn) ∈ X as a com-
modity which possesses xi units of the attribute i. For each i ∈ {1, ..., n}, let us pick
any skew-symmetric function fi : R2 → (−1, 1) that is strictly increasing in the first
component, and any strictly increasing and odd W : (−1, 1)n → R.12 We define the
binary relation R on X as

x R y iff W (f1(x1, y1), ..., fn(xn, yn)) ≥ 0.

Here the vector (f1(x1, y1), ..., fn(xn, yn)) corresponds to comparisons of the goods x and
y attribute by attribute; we can interpret fi as measuring either the (dis)similarity of
xi and yi or the salience of the ith attribute relative to the other attributes. We thus
follow Tserenjigmid (2015), who has recently worked out a nice axiomatization for it,
by calling R an intra-dimensional comparison (IDC) relation. Not only is any regret
preference is an IDC relation, but the model of IDC relations contains the additive utility
model (Example 3.5), the additive difference model of Tversky (1969) and a version of
the salience theory of Bordalo, Gennaioli and Schleifer (2012). The upshot here is that
(%,R) is a preference structure on X, where % is the binary relation on X defined by
x % y iff fi(xi, yi) ≥ 0 for each i = 1, ..., n.13

Example 3.10. Let R be a complete binary relation on X, and recall that T(R) stands
for the transitive core of R (Section 2). Then, (T(R),R) is a weak preference structure
on X, and, if (%,R) is a preference structure on X, then % must be a subrelation of
T(R). But (T(R),R) need not be a preference structure on X. For example, let u and ε
be as in Example 3.7, let R be the semiorder defined in that example, and assume that
supu(X) − inf u(X) > 2ε. Then, as proved by Nishimura (2018), we have x T(R) y iff
u(x) ≥ u(y). So, T(R)> ⊆ R> fails, and hence, (T(R),R) is not a preference structure
on X.

3.3 Weak vs. Proper Preference Structures

By definition, the strict part of the revealed preferences of a given preference structure
extends the strict part of the core preference relation of that structure. A weak preference

11We thank Pietro Ortoleva for suggesting this example to us.
12Skew-symmetry of fi means that fi(a, b) = −fi(b, a) for every a, b ∈ R.
13Due to the skew-symmetry and monotonicity of fis, we actually have x % y iff xi ≥ yi for each

i = 1, ..., n here. This makes the proof of our claim routine.
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structure may fail this property, thereby not qualifying to be a preference structure. (See
Examples 3.4 and 3.6.) But the lack of this property is the only thing that separates
a weak preference structure from a preference structure. That is, if (%,R) is a weak
preference structure on an alternative set X, the only reason why this may not be a
preference structure is that there may be alternatives x and y in X such that the agent
inherently prefers x over y strictly (that is, x � y) and yet the revealed preference R
views x and y equally desirable (that is, x R= y). If, therefore, we refine R so as to
drop (y, x) from it (for any such x and y in X), we would obtain a preference structure.
Put differently, there is a natural way of assigning a preference structure to any weak
preference structure.

To formalize this discussion, let (%,R) be a weak preference structure on X. We
define the binary relation R% on X as follows: xR% y iff

either x % y or [x and y are not %-comparable and x R y]. (1)

In words, the ranking of any two alternatives by R% is done lexicographically. We first
check if the core relation % applies, invoking R only when % is unable to rank the
alternatives (which we interpret as when the agent have difficulties in comparing x and
y). While this is not obvious, (%,R%) is indeed a preference structure on X.

Proposition 3.1. Let (%,R) be a weak preference structure on a nonempty set X. Then,
(%,R%) is a preference structure on X.

The Natural Epimorphism. We can also look at the situation from a categorical point
of view. Let wPSX stand for the set of all weak preference structures on X, and PSX

for the set of all preference structures on X. Then, the map π : wPSX → PSX , defined
by π((%,R)) := (%,R%), is a surjection that acts as the identity on PSX ; we refer to
π as the natural epimorphism. There is indeed good reason to consider this map
as “natural.” After all, we will see in Section 4 that (%,R) and (%,R%) are choice-
theoretically equivalent. Put differently, according to the choice theory we build for
preference structures in Section 4, there is no way of distinguishing between (%,R) and
(%,R%). Simply put, the natural epimorphism π partitions wPSX in such a way that
any one cell of the partition contains exactly one preference structure (which can be
used as the representative of that cell).

A transitive weak preference structure may well fail to be a preference structure
(Examples 3.4 and 3.6). Interestingly, the image of such a structure under the natural
epimorphism, which, by Proposition 3.1, is a preference structure, may lose its transi-
tivity. However, again in terms of the choice theory that we will introduce in Section 4,
this does not make a difference. This is not really surprising, for the revealed preference
part of such an image is sure to be quasitransitive.

Corollary 3.2. Let (%,R) be a transitive weak preference structure on a nonempty set
X. Then, (%,R%) is a preference structure on X and R% is quasitransitive.

Modeling Choice by Consultation. There is a nice interpretation of the image of a
transitive weak preference structure under the natural epimorphism. Think of an indi-
vidual who, when faced with a “hard” choice problem, seeks the advise of a consultant.
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The issue of dealing with “easy” choices is modeled by means of her (core) preference
relation % on the given alternative space X. When two alternatives x and y are incom-
parable with respect to % – this choice is “hard” for the agent – she acts according to the
advice of another individual (consultant). We imagine that the consultant is rational in
the traditional sense, so her advice stems from a complete preorder R on X. Moreover,
we assume that this preorder is consistent with % in the sense that % ⊆ R. (Otherwise,
it would be unrealistic to presume that the agent trust the recommendations of the
advisor, as some of those would conflict with her core preferences.) As such, (%,R) is a
transitive weak preference structure on X. But, in this interpretation, R does not really
correspond to the revealed preferences of the subject agent. After all, these preferences
reflect those of the consultant only over the problems that this agent finds “hard,” and
thus seeks help for. In other words, the revealed preferences of the agent should coincide
with % whenever % is able to render a ranking, and with R when this is not possible.
Thus, the preference structure π((%,R)) seems like the “right” model that corresponds
to this interpretation. In this model, the revealed preferences of the agent need not be
transitive, but they are quasitransitive.

3.4 Characterization of Preference Structures

The following result, in which X is an arbitrary nonempty set, provides a general rep-
resentation theorem for preference structures. Its import stems from the fact that it
connects the two components of a preference structure by means of a single entity,
namely, a collection of preorders.

Theorem 3.3. Let % and R be binary relations on X. Then, (%,R) is a (weak)
preference structure on X if, and only if, there is a nonempty collection P of preorders
on X such that

(%,R) =
(⋂
P ,
⋃
P
)

(2)

where
⋃
P is complete and each D ∈ P extends (includes) %.14

The “if’ part of this result provides a general method of defining preference structures.
In turn, its “only if” part provides a multi-selves interpretation for any given preference
structure (%,R). To wit, let P stand for a nonempty collection of preorders on X
as found in Theorem 3.3. We may think of each element D in P as a (potentially
incomplete) preference relation of a different “self” of the same individual. (For instance,
the agent may not know which of these relations will be the relevant one at the time of
consumption, so entertains them all before making her choice.) These “selves” of the
agent are consistent with the core preference relation % of the agent in that every one
of them extends %. In addition, %, being equal to

⋂
P , ranks an alternative x over

another alternative y iff every one of her “selves” agrees that this is the correct ranking;
% may thus be thought of as a dominance relation. On the other hand, the revealed
preference relation R of the agent, being equal to

⋃
P , ranks x over y iff at least one of

her “selves” agrees that this is the correct ranking. In this sense, we may think of R as a

14A similar result for necessary and possible preferences was given by Giarlotta and Greco (2013).
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rationalizable preference on X, borrowing (and slightly abusing) the terminology used by
Cherepanov, Feddersen and Sandroni (2013). Importantly, these notions of dominance
and rationalizability are compatible, for they are based on the preferences of the same
set of “selves” of the agent.

Remark. A natural question is when we can guarantee the completeness of each member of P in the
representation provided in Theorem 3.3. It turns out that this is a very restrictive requirement; we
can do this only when R is obtained from % by rendering every %-incomparable pair indifferent. Put
more precisely: A preference structure (%,R) on X satisfies R = % t Inc(%) iff there is a nonempty
collection P of complete preorders on X such that (i) (%,R) = (

⋂
P,
⋃
P) and (ii) each D ∈ P extends

%.15 (We omit the proof, which is available upon request.)

As a final remark, we note that Theorem 3.3 modifies readily to give a characteriza-
tion of transitive preference structures. This reads particularly simple if we impose the
completeness assumption (for the second relation) at the outset:

Corollary 3.4. Let % and R be binary relations on X with R being complete. Then,
(%,R) is a transitive (weak) preference structure onX if, and only if, there is a nonempty
collection P of preorders on X such that (2) holds, R ∈ P , and each D ∈ P extends
(includes) %.

4 Choice by Preference Structures

In Section 3 we have looked at various examples of preference structures, and their
basic properties. In this section, we turn to how “choices” may arise from preference
structures. This necessitates that we agree on what it means for an alternative to
“maximize” a given complete (but not necessarily transitive) binary relation on a given
feasible set, so we start the section with the discussion of this issue.

4.1 Maximization of Complete Binary Relations

Let X be a nonempty set, R a binary relation on X, and S a nonempty subset of
X. An element x of S is called R-maximal in S if there is no y ∈ S with y R> x,
and R-maximum in S if x R S. We denote the set of all R-maximal and R-maximum
elements in S by MAX(S,R) and max(S,R), respectively. We always have max(S,R) ⊆
MAX(S,R), but this inequality may hold strictly (unless R is complete).

For a complete, but nontransitive, binary relation R, these notions are rarely useful,
because in this case MAX(S,R) may be empty even for a finite set S. For this reason,
alternative notions of extrema are developed for binary relations. The best-known of
these is the notion of top-cycles to which we now turn.

15A classical result of order theory, due to Dushnik and Miller (1941), says that every partial order
% on a nonempty set X is the intersection of a nonempty collection P of linear orders on X. More
generally, Donaldson and Weymark (1998) prove that every preorder % on X is the intersection of a
nonempty collection P of total preorders on X. The theorem we just stated, which is based on the
Axiom of Choice, not only generalizes the Donaldson-Weymark Theorem, but it also shows that all
members of P in that theorem can be chosen as extensions of %.
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Top-Cycles. Let R be a complete binary relation on X. We say that a nonempty subset
A of S is a highset in S with respect to R, or more simply, an R-highset in S, if

x R> y for every x ∈ A and y ∈ S\A.

Notice that the collection of all R-highsets in S is nonempty, because it contains S.
Moreover, this collection is linearly ordered by set inclusion ⊇.16 Consequently, if it
exists, there is a unique smallest R-highset in S, namely, the intersection of all R-
highsets in S. We thus define the top-cycle in S with respect to R as

©(S,R) :=
⋂
{A : A is an R-highset in S}.

This set is nonempty iff the smallest R-highset in S exists. In particular, we have
©(S,R) 6= ∅ whenever S is a nonempty finite set.17

By “maximization of R in S,” we mean identifying ©(S,R). This is not only in-
tuitive, but it is also consistent with the standard case (because ©(S,R) reduces to
max(S,R) when R is transitive). Furthermore, the following fact demonstrates that
top-cycles indeed correspond to a well-defined optimization principle, thereby also clar-
ifying that our definition is consistent with how top-cycles are traditionally defined in,
say, social choice theory.

Proposition 4.1. Let S be a nonempty subset of a set X, and R a complete binary
relation on X. Then,

©(S,R) = max(S, tran(R|S)).

Let us call a nonempty subset A of X an R-cycle if for any x and y in A, there
exist finitely many a1, ..., ak in A such that x R a1 R · · · R ak R y. (If A is finite
and R is a complete binary relation on X, then A is an R-cycle iff we can enumerate A
as {x1, ..., xn} such that x1 R x2 R · · · R xn R x1.) As a matter of fact, we can use
Proposition 4.1 to obtain yet another characterization of the top-cycle set provided that
it is not empty. The next result identifies ©(S,R) as the unique R-highset in S that is
also R-cycle, hence justifying the term “top-cycle.”18

Corollary 4.2. Let S and T be nonempty subsets of X, and R a complete binary
relation on X. Then, T =©(S,R) if, and only if, T is both an R-highset in S and an
R-cycle.

Proof. Suppose that T = ©(S,R). Then, T is an R-highset in S by definition of the top-cycle
set. Moreover, by Proposition 4.1, if x, y ∈ T , then x tran(R|S)= y, and hence there exist k ∈ N and

16Proof. Suppose A and B are two R-highsets in S with A ⊆ B false. Then, pick any a ∈ A\B, and
notice that, for any b ∈ B, we have b R> a because a ∈ S\B and B is an R-highset in S. As A is itself
an R-highset in S, and a is in A, this implies b ∈ A for each b ∈ B, that is, B ⊆ A.

17Mainly in the literature on voting theory, the notion of top cycles are studied extensively in the
case where R is a tournament (that is, an asymmetric total binary relation on a finite set). See, for
instance, Laslier (1997). When R is an arbitrary total binary relation, some authors refer to ©(S,R)
as the weak top-cycle of R in S (cf. Ehlers and Sprumont (2008)), and some as the R-admissible set in
S (cf. Kalai and Schmeidler (1977)).

18This result is not new; it was proved by Schwartz (1972) in the case where S is finite.
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a1, . . . , ak in S such that xR a1 R · · · R ak R y. Therefore, T is an R-cycle. Conversely, suppose that
T is both an R-highset in S and an R-cycle. That T is an R-highset in S implies x tran(R|S)> y for
any x ∈ T and y ∈ S\T , whereas that T is an R-cycle implies x tran(R|S)= y for all x, y ∈ T . Put
together, we get T = max(S, tran(R|S)). In view of Proposition 4.1, we are done. �

Existence of Top Cycles. Most works on top-cycles with respect to a complete binary
relation take the ground set X of the binary relation as finite. This, in turn, makes
the issue of existence of top-cycles a trivial matter. More generally, one can use basic
topological hypotheses to guarantee the existence of top-cycles even when X is not finite.
One such theorem will be proved in Section 4.3.

4.2 Rationalization by Preference Structures

We now turn to the primary inquiry of the present paper, namely, to the fundamental
issue of defining how “choices” are made on the basis of a given preference structure. We
wish to investigate this matter at a suitably general level (without restricting attention
only to finite choice problems). To this end, let X be any nonempty set, and let X be any
collection of nonempty subsets of X such that (i) X contains all singletons, and (ii) X is
closed under taking finite unions. (In particular, X contains all nonempty finite subsets
of X). For ease of reference, we will refer to any such ordered pair (X,X) as a choice
environment. For example, (X, 2X\{∅}) is a choice environment. More generally,
where X<∞ denotes the collection of all nonempty finite subsets of X, (X,X<∞) is a
choice environment; this is the environment used by the vast majority of works in the
theory of individual choice. (In fact, this is the only choice environment when X is
finite.) Still more generally, (X,k(X)) is a choice environment, where X is a topological
space and k(X) stands for the set of all nonempty compact subsets of X. We will obtain
our main existence theorem in the context of this environment.

Given any choice environment (X,X), by a choice correspondence on X, we mean
a set-valued map C : X ⇒ X such that C(S) ⊆ S for every S ∈ X and C(S) 6= ∅ for
every finite S ∈ X. Such a choice correspondence C is said to be single-valued if C(S)
is a singleton for every finite S ∈ X.

Now take any weak preference structure (%,R) on X. We say that a choice corre-
spondence C on X is rationalized by (%,R) if

C(S) =©(MAX(S,%),R), (3)

or equivalently,
C(S) = max(MAX(S,%), tran(R|MAX(S,%))), (4)

for every S ∈ X. Thus, we posit that an agent with a weak preference structure (%,R)
settles on her choice(s) from a given feasible set S by employing a two-step procedure.
First, she looks for those alternatives in S that are maximal with respect to her core
preference relation %. If there is only one such alternative in S, then she chooses that
alternative. If there is a multiplicity of such alternatives (which may be due to indiffer-
ences and/or incomparabilities instigated by %), then she restricts her attention to those
alternatives, and evaluates them on the basis of her second (complete) binary relation
R. She finalizes her choice(s) by maximizing R on MAX(S,%) in the sense of finding the
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top-cycle in MAX(S,%) with respect to R. This top-cycle is the set of all alternatives
she deems “choosable” in S.

Replacing the top-cycle operator by an alternative maximization notion, such as the
uncovered set (Lombardi (2008)) or the untrapped set (Duggan (2007)), would yield
alternative theories of optimization. In what follows, we will derive a number of results
that will hopefully witness that working with top-cycles leads to a particularly useful
theory, but obviously, one cannot argue that our definition is the “right” one on a priori
grounds.

Remark. After the important contribution of Manzini and Mariotti (2007) to choice theory, choice
correspondences C : X⇒ X of the form C(S) = max(MAX(S,R1),R2), where R1 and R2 are binary
relations on a finite set X, are often called sequentially rationalized choice procedures.19 The spirit
of the notion of choice correspondences rationalized by preference structures is certainly in concert
with such choice procedures. However, despite the initial appearance of the formula (4), such a choice
correspondence is, in general, not a sequentially rationalized choice procedure. This is because, for a
feasible set S ∈ X, tran(R|MAX(S,%)) is not the same relation as tran(R) in general. Thus, there is no

“one” second binary relation used in a choice correspondence rationalized by a preference structure.20

4.3 Existence of Choice by Preference Structures

One of the main principles of optimization theory is the fact there is a maximum element
in every compact space with respect to a continuous and complete preorder. In fact,
it is known that one can even relax the transitivity requirement here, provided that
we look for top-cycle elements instead of maxima. In this section, we show that these
observations extend to the more general context of preference structures.

We say that a binary relation on a topological space X is continuous if it is a closed
subset of X×X (relative to the product topology). In turn, a weak preference structure
(%,R) is continuous if both % and R are continuous binary relations on X. Our main
existence theorem says that the choice correspondence rationalized by such a preference
structure is nonempty-valued on any compact subset of X.

Theorem 4.3. For any topological space X, the choice correspondence on k(X) ratio-
nalized by a continuous weak preference structure (%,R) on X is nonempty-valued.21

One of the major difficulties with working with nontransitive preferences in an eco-
nomic setting is that even finite menus may not possess a maximal element with respect

19Strictly speaking, the model considered by Manzini and Mariotti (2007), the sequential shortlisting
method, applies only to single-valued choice correspondences. The more general formulation we consider
here was studied recently by Garćıa-Sanz and Alcantud (2015).

20Where X is finite, Garćıa-Sanz and Alcantud (2015) show that any sequentially rationalized choice
correspondence C on X<∞ satisfies the so-called Expansion Property : C(S)∩C(T ) ⊆ C(S∪T ) for every
S, T ∈ P (X). By contrast, a choice correspondence C on X<∞ that is rationalized by a preference struc-
ture need not satisfy this property. For instance, let X := {x1, ..., x5}, % := 4X t {(x3, x5), (x4, x2)},
and consider the complete binary relation R on X with R> := {(x3, x5), (x4, x2), (x3, x1), (x4, x1)}.
Then, (%,R) is a preference structure on X. Now, put S := {x1, x2, x3} and T := {x1, x4, x5}, and
check that x1 belongs to C(S) ∩ C(T ), but not to C(S ∪ T ).

21One can relax the continuity assumption to upper semicontinuity here; it is enough to assume in
Theorem 4.3 that x↑,% and x↑,R are closed in X for every x ∈ X.
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to such a preference. Theorem 4.3 shows that the present theory is free of this diffi-
culty. Under the usual assumptions of compactness and continuity, there always exists a
“choice” with respect to a preference structure, provided that we define choice by a top-
cycle element (with respect to one’s revealed preference) within the set of all maximal
elements in a menu (with respect to that person’s core preference).

In passing, we note that the earliest (topological) theorem on the existence of top
cycles is due to Kalai and Schmeidler (1977). While that theorem applies to complete and
continuous binary relations only under the hypothesis of antisymmetry, Duggan (2007)
has shown that the antisymmetry requirement is in fact not needed. In turn, Theorem
4.3 generalizes Duggan’s Theorem; the latter obtains from Theorem 4.3 simply by setting
% as 4X :

Corollary 4.4. [Duggan, 2007] Let S be a nonempty compact subset of a topological
space X, and R a continuous and complete binary relation on X. Then, ©(S,R) 6= ∅.

Remark. It may at first seem like Theorem 4.3 can be obtained by applying Duggan’s Theorem to
MAX(S,%), where S is a compact subset of topological space X and % a continuous preorder on X.
This is not correct. While continuity of % and compactness of S jointly entail that MAX(S,%) is
nonempty, easy examples would show that this set may fail to be compact. As such, Theorem 4.3 is a
bit unexpected, and is proved by means of a direct argument without invoking Duggan’s Theorem.

4.4 Equivalent Preference Structures

In the standard theory of rational choice, a choice correspondence can be rationalized
by at most one complete preference relation (provided that the domain of the corre-
spondence is rich enough). This is no longer true for choice correspondences that are
rationalized by preference structures. That is, more than one preference structure may
well rationalize a given choice correspondence; we may think of such structures as “equiv-
alent” from the perspective of choice.

Definition. Given any choice environment (X,X), two weak preference structures (%,R)
and (%′,R′) on X are said to be equivalent if

©(MAX(S,%),R) =©(MAX(S,%′),R′)

for every S ∈ X; we denote this situation by writing (%,R) ∼= (%′,R′).22

In Section 3.3, we have stated that there is a “natural” way of pruning a weak
preference structure to make it a proper preference structure that is indistinguishable
from the former in terms of choice theory. The notion of equivalence helps formalize this
point. To wit, take any weak preference structure (%,R) on X, and define the relation
R% on X as in Section 3.3: xR% y iff either x % y, or x and y are not %-comparable and
x R y. Then, regardless of the choice environment, we have (%,R) ∼= (%,R%). That is:

22It is plain that ∼= is an equivalence relation on the collection of all weak preference structures on
X, but this relation depends on X. We do not use a notation that makes this dependence explicit only
for brevity.
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Proposition 4.5. In the context of any choice environment (X,X), any weak preference
structure (%,R) on X is equivalent to the (proper) preference structure (%,R%).

Proof. Take any S ∈ X, and note that there is nothing to prove if there is no %-maximal element in
S. So, assume otherwise, and take any %-maximal elements x and y of S. Then, either x ∼ y or (x, y) ∈
Inc(%). In the former case, we have xR= y and xR=

% y (because both R and R% are superrelations

of %), and in the latter case, xR y iff xR% y by definition of R%. Thus, the restrictions of R and
R% to MAX(S,%) are the same. In view of the arbitrary choice of S, and Proposition 4.1, therefore,
(%,R) ∼= (%,R%). �

Let (X,X) be a choice environment, and recall that wPSX and PSX stand for the
set of all weak and proper preference structures on X, respectively, while the natural
epimorphism π : wPSX → PSX is defined by π((%,R)) := (%,R%). Now, let ChoiceX
stand for the class of all choice correspondences on X, and define the map c : wPSX →
ChoiceX by setting c((%,R)) to be the choice correspondence on X that is rationalized by

(%,R). Then, Proposition 4.5 says that the following diagram, in which the restriction
of c to PSX is also denoted by c, commutes. In particular, π is a selection from the
quotient map on wPSX relative to the equivalence relation ∼=.

π

cc

-

6

PSX

ChoiceX

wPSX

�

Figure 4.1

In a nutshell, we conclude that a choice correspondence is rationalizable by a weak
preference structure if, and only if, it is rationalizable by a proper preference structure.

4.5 Examples

The following examples are meant to illustrate the breadth of the notion of rationaliza-
tion by preference structures. Unless otherwise is explicitly stated, (X,X) stands below
for an arbitrarily fixed choice environment.

Example 4.1. (The Rational Choice Model) Let % be a complete preorder on X. Then,
the choice correspondence C on X rationalized by the transitive preference structure
(%,%) satisfies

C(S) = max(S,%) for every S ∈ X.

Thus, the choice theory based on preference structures generalizes the standard choice
theory that is based on complete preference relations.
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Example 4.2. (The Top-Cycle Choice Rule) For a complete binary relation R on X, the
choice correspondence C on X rationalized by the preference structure (4X ,R) satisfies

C(S) =©(S,R) for every S ∈ X.

Thus, the choice theory based on preference structures generalizes the theory of top-cycle
choice rules that are commonly used in the theory of social choice and tournaments (cf.
Kalai and Schmeidler (1977), Schwartz (1986), Laslier (1997), and Ehlers and Sprumont
(2008).)

Example 4.3. (The Undominated Choice Rule) Let % be a preorder on X. Then, the
choice correspondence C on X rationalized by the preference structure (%,% t Inc(%))
satisfies

C(S) = MAX(S,%) for every S ∈ X.

Thus, the choice theory based on preference structures generalizes the choice theory that
is based on incomplete (but transitive) preference relations. (See, for instance, Eliaz and
Ok (2006).)

Example 4.4. (Pareto Refinement of Majority Voting) Let P and Pmaj be defined as in
Example 3.5. Then, the choice correspondence C on X rationalized by the preference
structure (

⋂
P ,Pmaj) assigns to any feasible set S ∈ X those Pareto optimal outcomes

in S that maximizes the transitive closure of the majority voting rule on S. (Here,
of course, Pareto optimality and majority voting rule are understood relative to the
preference relations in P .)

Example 4.5. (Transitive Preference Structures) We have noted in Section 4.2 that
the choice correspondence rationalized by a preference structure is, in general, not a
sequential choice procedure (in the sense of Manzini and Mariotti (2007)). However,
the situation is different in the transitive case. To wit, let (%,R) be a transitive weak
preference structure on a nonempty set X, and let C stand for the choice correspondence
on X. Then,

C(S) = max(MAX(S,%),R) (5)

for every S ∈ X. This sits square with the interpretation that % is the “sure” preferences
of a person, and R corresponds to the rational (complete) preferences of a consultant.
When dealing with a choice problem S, this person first identifies the undominated
alternatives in S with respect to her inherent (core) preference relation %. If there are
more than one such alternative in S, then she is conflicted as to which of these to choose.
In that case, she presents her reduced choice problem MAX(S,%) to her consultant who
identifies the best alternatives within MAX(S,%) according to her own preferences, and
our principal agent chooses (one of those) alternatives.

At the end of Section 3.3, we have noted that “choice-by-consultation” would be
better modeled by means of the image of (%,R) under the natural epimorphism, that
is, by (%,R%). The latter model is a proper preference structure, but it need not be
transitive (Section 3.3). Nonetheless, we still have

C(S) = max(MAX(S,%),R%) (6)
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for every S ∈ X with C(S) 6= ∅. (Indeed, for any such S, we have seen in the proof of
Proposition 4.5 that R and R% agree on MAX(S,%). As R is transitive here, therefore,
R% is transitive on MAX(S,%), so equation (6) follows from Proposition 4.1.)

Remark. In the context of Example 4.5, we have C = max(·,R), provided that (%,R) is a transitive
proper preference structure. For transitive weak preference structures, neither C ⊆ max(·,R) nor
C ⊇ max(·,R) is, in general, true. The main problem is with the latter containment, however. To wit,
when X is finite, we have C ⊆ max(·,R), but easy examples would show that the converse containment
need not hold.23

Example 4.6. (The Constant Threshold Choice Model) Let u : X → R be any function
and take any real number ε ≥ 0. Define the binary relation R on X as x R y iff
u(x) ≥ u(y)− ε. Consider first the preorder %′ on X defined by x %′ y iff either x = y
or u(x) > u(y). Then, (%′,R) is a weak preference structure on X, and the choice
correspondence C on X rationalized by this preference structure is the rational choice
model: C(S) = arg max{u(x) : x ∈ S} for every S ∈ X. Next, consider the preorder %
on X defined by x % y iff either x = y or u(x) > u(y) + ε. Then, (%,R) is a preference
structure on X (Example 3.7), and it is easy to prove that the choice correspondence C
on X rationalized by (%,R) satisfies

C(S) = {x ∈ S : supu(S)− u(x) ≤ ε}

for every S ∈ X. Following Luce (1956), such a correspondence is referred to as a
constant threshold choice model. Conclusion: Every constant threshold choice model is
rationalized by a preference structure.

4.6 On the Predictive Power of the Model

The examples above illustrate that quite a number of choice models are captured by
choice correspondences that are rationalized by preference structures. However, the
predictive power of the present choice model is far from nil. Certainly not all choice
correspondences arise from the maximization of a preference structure. Indeed, we have
already seen in Section 2.2 that this model does not contain many sequential choice
procedures. The following example provides a more direct, and simpler, demonstration.

Example 4.7. Put X := {x, y, z}, and take any choice correspondence C on X<∞ such
that

x ∈ C{x, y} and {y} = C{x, y, z}.

To derive a contradiction, suppose C is a choice correspondence rationalized by a pref-
erence structure (%,R) on X. Since y ∈ C{x, y, z}, y is %-maximal in X, and hence in
{x, y}, so x ∈ C{x, y} implies that x R y (Proposition 4.1). Since x does not belong
to C{x, y, z} but y does, therefore, x is not %-maximal in X. As y � x cannot hold
(because x ∈ C{x, y}), we thus have z � x. Then, y � z cannot hold, because otherwise

23We use the finiteness hypothesis here only for simplicity. In general, if (%,R) and X are such that
for every S ∈ X and y ∈ S\MAX(S,%), there is an x ∈ MAX(S,%) with x � y, then C ⊆ max(·,R)
holds. This is so, for instance, if X is topological space, X = k(X), and % is continuous (Lemma A.2).
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y � x and hence {y} = C{x, y}, a contradiction. It follows that z is %-maximal in X,
and hence y R> z (because {y} = C{x, y, z}). Thus, z � x R y and y R> z, which
contradicts %-transitivity of R.

Weak Axiom of Revealed Preference. Let X be any nonempty set, and recall that
X<∞ stand for the collection of all nonempty finite subsets of X. The most well-known
rationality criterion for a choice correspondence C on X<∞ is the Weak Axiom of Re-
vealed Preference (WARP). This property can be decomposed into two distinct parts,
known as, Property α (or the Chernoff Axiom) and Property β. We say that C on X<∞
satisfies the Property α if for every S, T ∈ X<∞ with S ⊆ T ,

C(T ) ∩ S ⊆ C(S),

and that it satisfies Property β if for every S, T ∈ X<∞ with S ⊆ T ,

x, y ∈ C(S) and x ∈ C(T ) imply y ∈ C(T ),

and finally, that it satisfies WARP if it obeys both of these properties. (Obviously,
WARP and Property α are identical axioms for single-valued choice correspondences.)
A fundamental result of choice theory says that C satisfies WARP iff it is rationalizable
by a complete preference relation (in the sense that there exists a total preorder % on
X with C(S) = max(S,%) for every S ∈ X<∞).

Unsurprisingly, a choice correspondence rationalized by a preference structure need
not satisfy either Property α or Property β. After all, choice correspondences of the
form considered in Examples 4.2 and 4.3 are well-known to fail Properties α and β,
respectively.

Remark. It is an easy exercise to verify that a choice correspondence on X<∞ that is rationalized
by transitive weak preference structure satisfies Property α. However, such a choice correspondence
may still fail Property β. (Indeed, for any preorder % on X, MAX(·,%) is a choice correspondence
rationalized by the transitive weak preference structure (%, X ×X) on X.)

Single-Valued Choice Correspondences. While rationalization by a preference struc-
ture ensures, in general, neither Property α nor Property β, it turns out that it reduces
to the standard notion of rationalization in the context of single-valued choice correspon-
dences defined on finite choice problems. This is the content of our next proposition.

Proposition 4.6. Let X be any nonempty set, and C a single-valued choice correspon-
dence on X<∞. Then, C is rationalized by a weak preference structure if, and only if, it
satisfies WARP.

Proof. The “if” part of the claim is straightforward. Conversely, suppose C is rationalized by a
weak preference structure (%,R) on X. Take any S, T ∈ X<∞ with S ⊆ T , and let x ∈ S be such that
{x} = C(T ). Then, x ∈ MAX(T,%) and x R MAX(T,%). To derive a contradiction, suppose x does
not belong to C(S). Since S ⊆ T, we have x ∈MAX(S,%) so there must then exist a y ∈MAX(S,%)
with y R> x. Since y does not belong to C(T ), therefore, y cannot be %-maximal in T. Since T is
finite, this means that z � y for some z ∈ MAX(T,%). Then, by %-transitivity of R, we find z R x.
By the choice of x, this is possible only if z = x. But this implies x � y, contradicting %-maximality of
y in S. Conclusion: C satisfies Property α (and hence WARP). �
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Proposition 4.6 is another demonstration of the predictive power of rationalization
by preference structures. Indeed, it shows that the choice theory that is based on
preference structures reduces to the standard theory of rational choice in the context
of single-valued choice correspondences on finite choice problems. (Thus, for instance,
the rational shortlisting models of Manzini and Mariotti (2007), Au and Kawai (2011),
and Cherepanov et al. (2013), as well as the attention/competition filter models of
Masatlioglu, Nakajima and Ozbay (2012) and Lleras, et al. (2017), and the attraction
effect models of Lombardi (2009) and Ok, Ortoleva and Riella (2015), are not captured
by this theory.) This is not really surprising. After all, the main goal of the model
of preference structures is to capture behavioral traits such as indecisiveness and cyclic
choices, and as such, the choice theory that this model induces is primed to make many-
valued choice predictions.

The Condorcet Criterion. Let (X,X) be a choice environment. A choice correspondence
C on X is said to satisfy the Condorcet Criterion if for every S ∈ X and x ∈ S,

x ∈ C{x, y} for every y ∈ S imply x ∈ C(S).

The choice behavior that is rationalizable by a preference structure is sure to be consis-
tent with this property.

Proposition 4.7. Let C be a choice correspondence on X rationalized by a weak pref-
erence structure (%,R) on X. Then, C satisfies the Condorcet Criterion.

Proof. Take any S ∈ X, and let x be an element of S such that x ∈ C{x, y} for every y ∈ S. Then,
x ∈ MAX(S,%) so, given that C(S) is the top-cycle in MAX(S,%) with respect to R, if x did not
belong to C(S), we would have y R> x for some y ∈MAX(S,%). But then, for this y, we would have
{y} = C{x, y}, a contradiction. Conclusion: C satisfies the Condorcet Criterion. �

Proposition 4.7 can also be used to distinguish those choice correspondences rational-
ized by preference structures from some of the boundedly rational choice correspondences
introduced in the recent literature on choice theory. For instance, we see readily that
the reference-dependent choice model of Ok, Ortoleva and Riella (2015) is distinct from
the present choice model as the former does not satisfy the Condorcet Criterion. Simi-
larly, the model of choice with limited consideration, introduced recently by Lleras et al.
(2017), is distinct from the present choice model. A choice correspondence C on X is said
to be a choice correspondence with limited consideration if C = max(Γ(·),D) where D is
a complete preorder on X, and Γ is a choice correspondence on X that satisfies Property
α. (Lleras et al. (2017) refer to Γ as a competition filter on X.) This model appears at
first to be more general than the present choice model. But, in general, a choice cor-
respondence with limited consideration does not satisfy the Condorcet Criterion, so it
need not be rationalizable by a weak preference structure.24 Similarly, justifiable choice

24Note that MAX(·,%) is a competition filter on X. Thus, max(MAX(·,%),tran(R)) is actually a
choice correspondence on X with limited consideration. However, this correspondence is in general dis-
tinct from©(MAX(S,%),R), and indeed, easy examples would show that it need not be rationalizable
by a weak preference structure.
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correspondences are, in general, not rationalizable by a weak preference structure.25

Finally, note that Example 4.6 shows that certain types of satisficing rules à la
Herbert Simon are captured by the present choice theory. But not all threshold choice
models, let alone all satisficing rules, are rationalizable by preference structures. For
example, consider the choice correspondence C on X defined by

C(S) = {x ∈ S : supu(S)− u(x) ≤ ε(S)},

where u is any real map on X and ε : X → R+ is a function such that ε(A) ≤ ε(B)
for every A,B ∈ X with A ⊆ B. (Where X is finite, Frick (2016) has recently provided
an axiomatization of such choice correspondences, and called them monotone threshold
choice models.) It is not difficult to show that such a model need not be rationalizable
by a preference structure.

Characterization of Rationalization by Preference Structures. It is of great interest
to provide a behavioral axiomatic characterization of all choice correspondences that
are rationalizable by a preference structure. This would formally describe the predictive
content of such correspondences fully, and provide a complete comparison of them with
rational choice correspondences. Given the sizable length of the present paper, however,
we do not take up this exercise here. Instead, this problem is tackled in a companion
paper by Evren, Nishimura and Ok (2019), where a complete characterization is provided
in the context of the choice environment (X,X<∞).

Other Behavioral Consistency Properties. Suppose C is a rationalizable choice corre-
spondence on X in the classical sense, that is, C = max(·,%) for some complete preorder
% on X. Let z be a choice from a feasible set S by a decision maker whose choice behav-
ior is modeled by this choice correspondence. If this agent is instead offered the feasible
set S ∪ {x} where x is a new alternative at least as good as z, she would surely deem
x choosable from this set: x ∈ C(S ∪ {x}). It is in this sense that C is monotonic with
respect to %.

Now let C be the choice correspondence rationalized by some preference structure
(%,R) on X. We would like to carry out the same query in this case as well, but now
monotonicity may be checked either with respect to the core preference relation % of the
agent, or her revealed preferences R. Let us first look into the first situation. Suppose
z ∈ C(S) for some S ∈ X. Then, if the agent has no doubt in her mind that x is a
better alternative than z, that is, x % z, one would expect she view x as choosable from
S ∪ {x}. The following proposition shows that C possesses this property indeed.

Proposition 4.8. Let C be a choice correspondence on X rationalized by a weak pref-
erence structure (%,R) on X. Then, for any S ∈ X,

x % z ∈ C(S) implies x ∈ C(S ∪ {x}).
25A choice correspondence C on X is said to be justifiable if there exists a nonempty collection P of

complete preorders on X such that C(S) =
⋃
{max(S,%) : % ∈ P} for every S ∈ X. (See, for instance,

Heller (2012) and Costa, Ramos and Riella (2019).) To prove our claim, let X := {x, y, z}, and consider
the choice correspondence C on P (X) with C(X) = {x, z} and C(S) = S for each nonempty proper
subset S of X. Then, C fails the Condorcet Criterion, but it is justifiable; choose P as {%1, %2} with
x �1 y �1 z and z �2 y �2 x.
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Let us now ask the same question with respect to the revealed preference relation
R. That is, suppose z ∈ C(S) for some S ∈ X, and that we have observed the agent
choose x over z (at least once). Would this agent necessarily deem x choosable from
S ∪ {x}? This is less clear than the previous situation. The decision maker may have
chosen x over z with serious difficulty, perhaps referring to the preferences of another
individual. Thus, it is possible that some alternatives in S may dominate x, but not z,
with respect to the core preferences of the agent, and this may cause x be not chosen
from S ∪ {x} even though z is deemed choosable from S. This may indeed be the case.
However, if z is the only choice from S, the following proposition shows that C acts still
monotonically with respect to R.

Proposition 4.9. Let C be a choice correspondence on X rationalized by a preference
structure (%,R) on X. Then, for any finite S ∈ X,

x R z and {z} = C(S) imply x ∈ C(S ∪ {x}).

Remark. The requirement “{z} = C(S)” cannot be relaxed to “z ∈ C(S)” in Proposition 4.9. To
see this, let X := {x, y, z}, and define % := 4X t {(y, x)} and R := X2\{(x, y)}. Then, (%,R) is a
preference structure on X. But for the choice correspondence C on X<∞ rationalized by (%,R), we
have C(X) = {y, z} = C{y, z} while x R z.

It is also worth noting that Proposition 4.9 is not valid for weak preference structures. For instance,
if X := {x, y, z}, % := 4Xt{(z, x), (z, y)} and R := X×X. Then, (%,R) is a weak preference structure
on X, and x R z and {z} = C{y, z}, but x does not belong to C{x, y, z}.

5 Elicitation of Preference Structures

Rational choice theory is built on the hypothesis that the choice correspondence of a
rational individual arises from the maximization of a complete preorder. Moreover,
such a choice correspondence is rationalized by a unique complete preorder. (That is,
if (X,X) is a choice environment and max(·,%) = max(·,%′) on X for some complete
preorders % and %′ on X, then % = %′.) Thus, every complete preorder (interpreted
as a preference relation) gives rise to a unique rationalizable choice model, and every
rationalizable choice model induces a unique preference relation (that arises from pair-
wise choice problems). While trivial, this duality is an essential aspect of rational choice
theory.

In this section, we investigate if, and how, such a duality exists for the choice model
induced by preference structures. That is, we examine the relation between two pref-
erence structures that happen to rationalize the same choice correspondence. Put a
bit more precisely, we would like to understand exactly how two equivalent preference
structures (%,R) and (%′,R′) relate to each other. The exact analogue of the situation
in rational choice theory would be to have % = %′ and R = R′ in this instance. The
second of these equations is indeed correct (provided that we work with proper pref-
erence structures), but mainly because different preorders with the same asymmetric
part would declare the same elements as maximal in all feasible sets, the first equation
is, in general, false. (For instance, (4X , X × X) and (X × X,X × X) rationalize the
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same choice correspondence.) However, we will show below that one can always iden-
tify “the” largest preference structure – this is the one whose core preference exhibits
the least amount of incompleteness – that rationalizes a choice correspondence which
is known to be rationalizable by some preference structure. Thus, the present choice
model too exhibits a useful, and this time entirely nontrivial, duality. Every preference
structure gives rise to a unique rationalizable choice model (in the sense of (3) and
in the context of a suitably general choice environment), and conversely, every choice
model that is rationalizable by a preference structure induces a unique largest preference
structure.

5.1 Elicitation in General Choice Environments

Revealed Preferences. Let (X,X) be any choice environment. Let C be a choice
correspondence on X. There are a number of important preference relations on X that
we may define by using C. Perhaps the most obvious is the binary relation RC on X
defined by

x RC y iff x ∈ C{x, y}.

In words, x RC y means that the agent (with choice correspondence C) would choose x
over y when comparing these two alternatives alone. Naturally, we refer to RC as the
revealed preference relation induced by C. This relation is complete (because C is
nonempty-valued over finite sets).

The following elementary observation highlights the importance of RC .

Lemma 5.1. Let (X,X) be any choice environment, and C a choice correspondence on
X. If C is rationalized by a preference structure (%,R) on X, then R = RC .

Proof. For any x and y in X, setting S = {x, y} in (3) yields {x} = C{x, y} iff x R> y, and
{x, y} = C{x, y} iff x R= y. Thus: R = RC . �

In other words, the revealed preferences of an individual whose choices are rational-
ized by a preference structure are uniquely identified from her binary choice decisions.
This shows that the interpretation of preference structures we outlined in Section 3.1 is
duly consistent with the choice theory we introduced in Section 4.

We should emphasize that Lemma 5.1 is not valid for weak preference structures. In-
deed, if (%,R) is weak preference structure on X, then (%,R) ∼= (%,R%) by Proposition
4.1, but, in general, R and R% are distinct relations. Thus, at least from the perspective
of preference identification, proper preference structures appear to be superior to weak
preference structures.

Revealed Core Preferences. Unlike its revealed part, the core preference part of a pref-
erence structure is not observable by an outside observer, so it is particularly important
to understand which sorts of preorders on X rationalize a given choice correspondence
C on X when coupled with RC . We denote the set of all such preorders by P(C), that
is,

P(C) := {% : (%,RC) is a preference structure on X that rationalizes C} .
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Thus: P(C) 6= ∅ iff C is rationalizable by a preference structure. Moreover, for any %
and %′ in P(C), we have (%,RC) ∼= (%′,RC), that is, choice-theoretically, there is no
difference between % and %′.

There is a natural way of partially ordering all preorders on X on the basis of their
incompleteness. For any two such preorders % and %′, we say that % is more complete
than %′ if the former preorder extends the latter. We denote this partial order (as well
as any restriction of it to a given set of preorders on X) by w. In particular, for any %
and %′ in P(C), we have

% w %′ iff % extends %′ .

Clearly, endowing P(C) with w makes it a poset. In fact, even at this level of generality,
this poset possesses a nontrivial structure:

Theorem 5.2. Let (X,X) be any choice environment, and C a choice correspondence
on X. If C is rationalized by at least one preference structure on X, then P(C) is a
complete ∨-semilattice.26

This result, whose proof is somewhat involved, may at first appear as a technical
observation, but, in fact, it provides a clear insight about those core preferences that
rationalize a given choice correspondence C when coupled with the revealed preference
relation induced by C. Apparently, any collection of such core preference relations can
be combined to get another, more decisive, core preference that still rationalizes C when
adjoined to RC . In particular, there is a most decisive core preference on X. (We will
compute this preference shortly.)

Remark. P(C) need not be a ∧-semilattice under the hypotheses of Theorem 5.2. To see this, pick any
two objects outside N2, say, a and b, and put X := N2t{a, b}. Next, take the partial order �I on X with
x �I y iff either x, y ∈ N2, x1 > y1 and x2 = y2, or x ∈ N2 and y = a. Similarly, let �II stand for the
partial order on X with x �II y iff either x, y ∈ N2, x1 = y1 and x2 > y2, or x ∈ N2 and y = a. Finally,
define the binary relation R on X as x R y iff either x, y ∈ N2 and x1+x2 ≥ y1+y2, or y ∈ {a, b}. Then,
(�I,R) and (�II,R) are transitive preference structures on X. Now, put X := X<∞∪{X}, and note that
(X,X) is a choice environment. Beides, both (�I,R) and (�II,R) rationalize the choice correspondence
C on X, where C(S) = max(S,R) for any S ∈ X<∞ and C(X) = {b}. Thus: {�I,�II} ⊆ P(C). But,
if % is a preorder on X with �I ⊇ % and �II ⊇ %, then no two elements of N2 are %-comparable, so
MAX(X,%) ⊇ N2, and hence, ©(MAX(X,%),R) = ∅, which means that (%,R) does not rationalize
C. Thus, there is no infimum of �I and �II in P(C) relative to w.

The Largest Revealed Core Preference. The revealed preference relation induced
by C arises only through pairwise comparisons of alternatives, and it does not tell us
whether or not x RC y entails the choosability of x over y across all feasible sets. This
task would be handled by those preorders % that are compatible with RC (in the sense
that C is rationalized by (%,RC)). Indeed, according to our interpretation of (%,RC),
x � y means that the agent prefers x over y “obviously,” so it stands to reason that
she would never choose y in any situation in which x is feasible; the presence of x in

26A poset (A,D) is said to be a complete ∨-semilattice if for every nonempty subset B of A, the
D-minimum of the set {a ∈ A : a D B} exists; complete ∧-semilattices are defined dually. If (A,D) is
both a complete ∨-semilattice and a complete ∧-semilattice, we say that it is a complete lattice.
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any menu rules out y being a potential choice. This prompts looking at the asymmetric
binary relation �C on X with

x �C y iff y /∈ C(S) for every S ∈ X with x ∈ S.

We refer to �C as the revealed core dominance induced by C.
It is also possible that x and y are “obviously” equally appealing for the decision

maker. From the vantage point of choice theory, this means that replacing x with y in
any choice problem does not at all alter the choice behavior of the agent (apart from
the replacement of x with y). That is, if x is deemed choosable (or unchoosable) in a
menu, replacing x with y in that menu would yield a menu in which y is choosable (or,
respectively, unchoosable). In addition, the choosability status of any other alternative
in the two menus remains the same. We are thus led to define the binary relation ∼C

on X by x ∼C y iff
x ∈ C(S ∪ {x}) iff y ∈ C(S ∪ {y})

and
z ∈ C(S ∪ {x}) iff z ∈ C(S ∪ {y})

for every S ∈ X and every z ∈ S. Put succinctly, x ∼C y means that x and y are perfect
substitutes in that replacing one for the other does not change the choice behavior of
the agent in any choice situation. This relation, which we borrow from Riberio and
Riella (2017), is called the revealed core indifference induced by C. It is a symmetric
relation disjoint from �C .

Finally, we define %C as the union of the relations �C and ∼C , and refer to it as the
revealed core preference relation induced by C. In general, %C is a subrelation of
RC distinct from RC . And, in fact, not only is (%C ,RC) is a preference structure on X
that rationalizes C, but it is the largest such structure. Put differently, %C turns out to
be the top element of the complete ∨-semilattice P(C). This is the second main result
of this section:

Theorem 5.3. Let (X,X) be any choice environment, and C a nonempty-valued choice
correspondence on X. If C is rationalized by at least one preference structure on X,
then ∨

P(C) = %C .

Once again, this is not meant to be a technical result. Rather, it characterizes the
most decisive core preference relation compatible with a choice correspondence (that is
rationalizable by a preference structure). While the core part of a preference structure
is, in general, not observable and non-unique, we can still elicit this part, in its most
decisive form, from one’s (observable) choice behavior. In the next section, we will show
that, in most cases of interest, this computation is fairly straightforward. For now, we
provide a concrete example.

Example 5.1. (Revealed Preferences with Imperfect Discrimination) Take any integer
n ≥ 2, and let u : Rn → R be a continuous surjection. Pick any ε > 0, and consider the
preference structure (%,R) on Rn where x R y iff u(x) ≥ u(y)− ε, and x % y iff either
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x = y or u(x) > u(y) + ε. Let C be the choice correspondence on k(Rn) rationalized by
(%,R). Using the characterization of C given in Example 4.5, one can show that

x %C y iff either u(x) = u(y) or u(x) > u(y) + ε

for any x, y ∈ Rn. (Proof is left as an exercise.) So, in this case, we have � = �C , but
(since u cannot be injective), we have % 6= %C .

Remark. For expositional purposes, we have not stated Theorem 5.3 above in its strongest form. It
turns out that the nonempty-valuedness hypothesis can be omitted in the statement of this theorem,
but at the cost of lengthening the proof significantly. In view of Theorem 4.3, however, this hypothesis
is largely inconsequential for applications.

5.2 Elicitation in Compact Choice Environments

While it applies in any choice environment, Theorem 5.2 has a shortcoming. The order-
ing of P(C) used in this result exhibits a somewhat unnatural asymmetry: While any
two rationalizing core preferences can be combined to get a more decisive such prefer-
ence, we cannot, in general, find a less decisive such preference. Our final theorem shows
that if the alternative space has a topology, and we restrict our attention to compact
choice problems, then this difficulty disappears, under a standard continuity condition.

Theorem 5.4. Let X be a topological space, and let C be the choice correspondence
on k(X) rationalized by a continuous preference structure (%,R) on X. Then, P(C) is
a complete lattice, and

∨
P(C) = %C .

27

Taking stock, the notions of a complete preference relation and a rationalizable choice
correspondence (in the classical sense) are duly, and trivially, consistent with each other.
Theorem 5.4 establishes a similar duality between the notions of a preference structure
and a choice correspondence rationalizable by a preference structure. This time things
are nontrivial, because for every such choice correspondence C, there is a whole collection
of core preferences (but a single revealed preference) that are compatible with C. But,
under standard (topological) conditions, that collection is a complete lattice (relative
to the “more complete than” ordering), so there is an inherent discipline to the model.
In particular, so long as we pick the revealed core preference and revealed preference
relations induced by C as “representative,” then the models (%C ,RC) and C stand
dual to each other, provided that C is rationalizable by a preference structure. (That is,
(%C ,RC) is defined through C, and the choice correspondence that (%C ,RC) rationalizes
is precisely C.)

Remark. It may be of interest to see what
∧

P(C) looks like; this is the least decisive core preference
that rationalizes C when combined with RC . This relation is found as tran(B) ∪ 4X , where B is
a binary relation on X defined by x B y iff there exist a k ∈ N and z1, . . . , zk in X such that (i)
yRC z1 RC · · · RC zk RC x, (ii) y ∈ C{y, z1, . . . , zk}, (iii) {x, z1, . . . , zk} ⊆ C(S) for some S ∈ k(X)
with y ∈ S, and (iv) y /∈ C{x, y, z1, . . . , zk}. The proof is given in the Online Appendix of this paper,
available in the websites of either of the authors.

27Full continuity of (%,R) is not needed for this result; it is enough to take % to be continuous.
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6 Conclusion

In this paper, we proposed a new model to describe the preferences of an economic
agent on an arbitrarily given set X of choice prospects. The classical approach is to
use a complete preorder, which is typically referred to as a preference relation, on X for
this purpose. Instead, we suggested the use of two binary relations on X. The first of
these, denoted as %, aims to capture those rankings of the agent that are (subjectively)
“obvious/easy.” (This relation is not observable.) As it is hard to imagine that cyclical
choice patterns would arise from the “easy” pairwise choice problems, we assume that
% is reflexive and transitive, but it need not be complete (because some pairwise choice
problems may well be deemed “hard” by the agent). The second binary relation, denoted
as R, arises from what we observe the agent choose in the context of all pairwise choice
problems. (This relation is observable.) As these include the “hard” ones as well, this
relation may exhibit cycles, so it is allowed to be nontransitive, while, naturally, we
assume that it is complete. Finally, we posit that % and R are consistent with each
other (as they arise from the preferences of the same agent) in the sense that (i) R is an
extension of %, and (ii) R is transitive with respect to %. This way we arrive at what
we dubbed here as a preference structure. We have showed above that many preference
models (where the economic agent may be a group of individuals) are captured by such
structures. Among these are the models of incomplete preferences, preferences with
imperfect ability of discrimination, regret preferences, and preferences completed by the
recommendations of a consultant.

As the main goal of this paper, we have developed a model of choice behavior that
arises from preference structures by using the notion of top-cycles. This led to a rich
theory of choice which generalizes the classical rational choice theory. The explanatory
power of this alternative choice theory is obviously superior to the classical theory. It
also has a good deal of predictive power (although, of course, less than the classical
theory), for it is a menu-independent model that satisfies, say, the Condorcet Criterion.
Moreover, this theory has appealing existence and uniqueness properties, paralleling
those of the standard rational choice theory. Indeed, one of our main results establishes
the nonempty-valuedness of choice correspondences that are induced by preference struc-
tures, and another one identifies the largest preference structure that rationalizes a choice
correspondence that is known to be rationalizable by some such structure.

We would like to think of the present paper as a beginning of an extensive research
project with numerous avenues to be explored. It would be interesting to revisit the
classical consumer theory, this time using preference structures instead of preference re-
lations. Similarly, and even more interestingly, one should investigate how (ordinal) game
theory would look like when we model the preferences of the players through preference
structures. Then, one should certainly see how the classical theories of decision-making
under risk and uncertainty would adapt to preference structures. This would, in turn,
open up a whole new set of potential applications. Similarly, it should be interesting
to see how one may model time preferences through preference structures, and then
revisit the theory of optimal saving. These, and numerous other avenues that remain to
be explored, will eventually determine if the notion of preference structures is indeed a
useful construct for decision theory at large.
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APPENDIX: Proofs

This appendix contains the proofs of the results that were omitted in the body of the text.

Proof of Proposition 3.1

Let X be a nonempty set, and (%,R) a weak preference structure on X. That R% is a completion of
% follows readily from the definition of R%, so we need only to prove that R is %-transitive. To this
end, take any x, y and z in X such that x R% y % z. Notice that z � x cannot hold, because otherwise
y � x (by transitivity of %), and hence y (R%)> x (because R% is an extension of %), a contradiction.
Thus: Either x % z or (x, z) ∈ Inc(%). In the former case, we have x R% z by definition of R%, so
we are done. Similarly, if x % y, then x R% z because % is transitive and % ⊆ R%. So, assume that
(x, z) ∈ Inc(%) and x % y is false. Since x R% y, the latter statement and the definition of R% imply
that x R y. Then, x R y % z, and hence x R z by %-transitivity of R. It follows that (x, z) ∈ Inc(%)
and x R z, that is, x R% z, as we sought. As we can similarly show that x % y R% z implies x R% z,
we conclude that (%,R%) is a preference structure on X.

Proof of Corollary 3.2

Let X be a nonempty set, and (%,R) a transitive weak preference structure on X. In view of Proposition
3.1, we only need to prove that R% is quasitransitive. We will in fact prove something stronger than
this below.

First, recall that a binary relation S is said to be Suzumura consistent if x tran(S) y implies
not y S> x for every x, y ∈ X. Second, note that it is easy to verify that if (%,S) is a preference
structure such that Inc(%)∩S is Suzumura consistent, then S is quasitransitive. Thus, Proposition 3.1
will be proved if we can show that Inc(%)∩R% is Suzumura consistent. To this end, put T := Inc(%)∩
tran(R%), and note that

T = Inc(%) ∩R%. (7)

(Indeed, for any (x, y) ∈ T, there exist finitely many x1, ..., xk ∈ X such that x R% x1 R% · · · R% xk
R% y. Since R% ⊆ % ∪ R ⊆ R, we then have x R x1R · · ·R xk R y, so given that R is transitive,
we find x R y. As (x, y) ∈ Inc(%), this means x R% y. Thus, T ⊆ Inc(%) ∩ R%, while the converse
containment is trivially true.) Now, to derive a contradiction, suppose Inc(%) ∩R% is not Suzumura
consistent. Then, by (7), T is not Suzumura consistent, so there exists a k ∈ N and x1, . . . , xk in X
such that x1 T · · · Txk Tx1 with at least one of these T holding strictly. By relabeling if necessary,
we may assume that xk T

> x1. Then, x1 R% · · · R% xk T
> x1, that is, x1 tran(R%)xk (R%)

>
x1. Since

x1 and xk are not %-comparable, it follows that x1 Txk T
> x1, a contradiction.

Proof of Theorem 3.3

The proof of the “if” part of the assertion is straightforward, so we focus only on its “only if” part. Let
(%,R) be a preference structure on X. (The proof for a weak preference structure is given analogously.)
Put T := R\ %. We may assume that T is nonempty, for otherwise there is nothing to prove.

Claim. For every (x, y) ∈ T, there is a preorder %(x,y) on X such that (i) %(x,y) extends %, (ii)
%(x,y) ⊆ R, and (iii) x %(x,y) y.

28

Proof of Claim. Fix any (x, y) ∈ T, and define

%(x,y) :=% ∪ (x↑,% × y↓,%).

That %(x,y) is a preorder with x %(x,y) y is verified routinely. To prove (ii), take any a, b ∈ X with
a %(x,y) b. If (a, b) does not belong to R, then it does not belong to % either (because R is a superrelation

of %). In that case, then, (a, b) belongs to x↑,%×y↓,%, so we have a % xR y % b, which, by %-transitivity
of R, implies a R b, a contradiction. We thus conclude that %(x,y) ⊆ R. It remains to check that %(x,y)

28When (%,R) is a weak preference structure, we verify a weaker property of (i), namely, that %(x,y)

includes %, which trivially follows by the construction of %(x,y).
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extends %. Obviously, % is a subrelation of %(x,y). To complete the proof of the claim, then, take any
a, b ∈ X with a � b. To derive a contradiction, suppose we have b %(x,y) a. Then, by definition of %(x,y),

(b, a) must belong to x↑,% × y↓,%, and hence, y % a � b % x.As % is transitive, then, y � x, and this
implies y R> x (because � is a subrelation of R>), but this contradicts the fact that (x, y) ∈ R. ‖

For each (x, y) ∈ T, let %(x,y) be a preorder on X that satisfies the conditions of the claim above,
and put

P := {%(x,y): (x, y) ∈ T} ∪ {%}.

Then, every element of P is a preorder on X that extends %. As % is a subrelation of %(x,y), and %(x,y)

is a subrelation of R, for each (x, y) ∈ T, it is also plain that % =
⋂
P and

⋃
P ⊆ R. On the other

hand, if x R y, then either x % y or (x, y) ∈ T. In the former case, we obviously have (x, y) ∈
⋃
P.

In the latter case, x %(x,y) y, and we again find (x, y) ∈
⋃
P. Conclusion:

⋃
P = R. Finally, as R is

total, this finding shows that
⋃
P is total, and our proof is complete.

Proof of Corollary 3.4

For the “if” part of the claim, observe that the hypothesis implies R is a complete preorder which extends
(includes) %. Obviously, % is a preorder as it is the intersection of the collection P of preorders. This
concludes that (%,R) is a transitive (weak) preference structure on X. For the “only if” part, we readily
obtain the required conditions by setting P = {%,R}.

Proof of Proposition 4.1

We will use the following preliminary result to streamline the argument.

Lemma A.1. Let S be a nonempty set, and R a complete binary relation on X such that ©(S,R) 6= ∅.
Then, x tran(R|S) y for every x, y ∈ ©(S,R).

Proof. Suppose the assertion is false. By completeness of R, then, there is a y ∈ ©(S,R) such
that A := {x ∈ ©(S,R) : x tran(R|S)> y} is nonempty. Then, A tran(R|S)> z, which implies A R|>S
z (because R is complete), for every z ∈ ©(S,R)\A. But then A is a proper subset of ©(S,R) which
is an R-highset in S, which contradicts ©(S,R) being the smallest such set. �

We now turn to the proof of Proposition 4.1. If ©(S,R) 6= ∅, then Lemma A.1, and the fact that
©(S,R) is an R-highset in S, readily entail that any one element of ©(S,R) is a maximum element in
S with respect to tran(R|S). In other words, nonemptiness of ©(S,R) entails that max(S,tran(R|S))
is nonempty. Consequently, it is enough to prove the desired equation under the hypothesis that
max(S,tran(R|S)) 6= ∅. If x belongs to max(S,tran(R|S)) and y is an element of S that does not, then
y R x cannot hold, because otherwise, y R x tran(R|S) S, and hence, y tran(R|S) S, which means
y ∈ max(S,tran(R|S)), a contradiction. As R is complete and max(S,tran(R|S)) is nonempty, therefore,
we conclude that max(S,tran(R|S)) is an R-highset in S. To derive a contradiction, suppose there is an
R-highset in S, say, B, which is a proper subset of max(S,tran(R|S)). Take any x in max(S,tran(R|S))
which does not belong to B, and fix an arbitrary y in B. As x tran(R|S) y, there exist finitely many
a1, ..., ak ∈ S such that x R a1 R · · · R ak R y. Then, since B is an R-highset in S that contains y,
it must also contain ak. Continuing inductively with this argument, we see that each ai, and in fact, x
must belong to B, a contradiction. This completes our proof.

In the remaining part of this appendix, we adopt the following two conventions:

Notational Convention: Where a preorder % on a nonempty set X is given (and understood from
the context),

M(A) := MAX(A,%) for any nonempty A ⊆ X.

Notational Convention: For any nonnegative integer k, we put

[k] := {0, ..., k}.
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Proof of Theorem 4.3

We need the following fact for the main part of the argument.

Lemma A.2. Let % be a continuous preorder on X. Then, for every S ∈ k(X) and x ∈ S\M(S), there
exists a y ∈M(S) with y � x.

Proof. Take any S ∈ k(X) and x ∈ S\M(S), and put T := {y ∈ S : y % x}. By upper
semicontinuity of % ∩ (S × S), T is a closed subset of S. Since S is compact, therefore, T is a compact
set in X. Then, by means of a well-known theorem of order-theory, we have MAX(T ) 6= ∅.29 Pick any
y in this set. Notice that any z ∈ S with z % y must belong to T (by transitivity of %). It follows that
y is %-maximal in S as well. And, obviously, y % x. Besides, since x is not %-maximal in S, we have
y � x. �

We now turn to the proof of Theorem 4.3. Let (%,R) be a continuous preference structure on
X. Take any S in k(X), and note that M(S) 6= ∅ (Lemma A.2). If there is an R-maximum element
in M(S), then, obviously, this element is tran(R|M(S))-maximum in M(S), and hence it belongs to
©(M(S),R). Assume, then, there is no R-maximum in M(S). This means that for every x ∈ M(S),
there is a y ∈ M(S) with y R> x. Moreover, take an arbitrary x ∈ S\M(S), and observe that, by
Lemma A.2, there exists a z ∈M(S) with z � x. If this x is such that x R y for all y ∈M(S), then we
also have z R y for all y ∈M(S) by %-transitivity of R, which contradicts the hypothesis that there is
no R-maximum in M(S). Therefore, y R> x for some y ∈M(S). Conclusion: For every x ∈ S, there is
a y ∈M(S) with y R> x. It follows that {y↓↓ : y ∈M(S)} is an open cover of S, where y↓↓ := {x ∈ S : y
R> x}. Since S is compact, then, there is a finite subset T of M(S) such that {y↓↓ : y ∈ T} covers
S. As T is finite, there is a tran(R|M(S))-maximum, say, x∗, in T . But for any x ∈ M(S), there is a

y ∈ T with y R> x (since {y↓↓ : y ∈ T} covers S), and hence x∗ tran(R|M(S)) y R> x, that is, x∗

tran(R|M(S)) x. It follows that x∗ is a tran(R|M(S))-maximum in M(S). By Proposition 4.1, therefore,
x∗ ∈ ©(M(S),R). This completes the proof of Theorem 4.3.

The following result shows that, in the context of a preference structure (%,R), the asymmetric
part of R is transitive relative to the asymmetric part of %. We will use this fact at several points
below.

Lemma A.3. Let (%,R) be a weak preference structure on a nonempty set X. Then,

x % y R> z (or x R> y % z) implies x R> z

for every x, y, z ∈ X.

Proof. Take any x, y, z ∈ X with x % y R> z but assume that x R> z is false. As R is complete,
we then have z R x. So, z R x % y and we find z R y contradicting y R> z. The analogous argument
shows that x R> y % z implies x R> z as well. �

Proof of Proposition 4.8

Take any S ∈ X, and any x, z ∈ X with x % z ∈ C(S). We put T := S ∪ {x}; our aim is to
show that x ∈ C(T ). Assume first that x ∼ z (where ∼ is the symmetric part of %). In this case,
M(S)∪{x} = M(T ). So, in view of Proposition 4.1, z ∈ C(S) implies that z tran(R|M(S)) M(S) while
x R= z (because R contains %). It follows that x tran(R|M(T )) M(T ), so, again by Proposition 4.1,
x ∈ C(T ).

Assume now that x � z. In this case x belongs toM(T ), but z does not. To derive a contradiction, let
us suppose that x does not belong to C(T ). By Proposition 4.1, then, there must exist a y ∈M(T )\{x}
such that

y tran(R|M(T ))
> x. (8)

29The earliest reference for this result seems to be Wallace (1945).
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Now, since z ∈ C(S) and y ∈M(T )\{x}, and hence y ∈M(S), we have z tran(R|M(S)) y, so there is a
positive integer k and w0, ..., wk ∈M(S) such that

z = w0 R w1 R · · ·R wk = y.

Put ` := max{i ∈ [k] : x � wi}. (This number is well-defined because x � w0.) By (8), and because R
contains %, we cannot have x % wk, and hence ` ∈ [k− 1]. But then w`+1, ..., wk ∈M(T ), and we have

x � w` R w`+1 R · · ·R wk = y,

so, by %-transitivity of R, we find

x R w`+1 R · · ·R wk = y.

This means x tran(R|M(T )) y, contradicting (8).

Proof of Proposition 4.9

Take any finite S ∈ X, and any x, z ∈ X with x R z and {z} = C(S). Put T := S ∪ {x}; we wish to
show that x ∈ C(T ). Suppose first that x is not %-maximal in T. Then y � x for some y ∈ T. Since T
is finite and % is transitive, it is without loss of generality to assume that y ∈M(T ). Since y � x R z,
we get y R z by %-transitivity of R. As {z} is the top-cycle in M(S), and y ∈ M(S), we must then
have y = z. But this means z � x, and hence z R> x, contradiction. Conclusion: x ∈M(T ).

Now, since x R z, and R extends %, we do not have z � x. On the other hand, by Proposition 4.8,
x % z implies x ∈ C(T ). It remains to consider the case where (x, z) ∈ Inc(%). In this case, z ∈M(T ).
Moreover, as {z} is the top-cycle in M(S), we have z R> y for every y ∈ M(S)\{z}. But then, x R z
R> y, and hence x tran(R|M(T )) y, for every y ∈ M(T )\{x, z}. By Proposition 4.1, then, x ∈ C(T ),
and we are done.

Proof of Theorem 5.2

We begin with proving a preliminary result that will be needed in the main body of the proof. This
lemma is stated in the setting of Theorem 5.2.

Lemma A.4. For any S ∈ X, % ∈ P(C), and any (x, y) ∈ S ×X with x % y,

x % y implies C(S ∪ {y}) ∩ S = C(S).

Proof. If y is not %-maximal in S ∪ {y}, then M(S ∪ {y}) = M(S), and the claim follows readily
from Proposition 4.1. We thus assume that y ∈M(S ∪ {y}). In turn, since x % y, this implies that x ∈
MAX(S ∪ {y}) and x ∼ y. Consequently,

{x, y} ⊆M(S ∪ {y}) = M(S) ∪ {y}. (9)

Besides, for any a, b ∈M(S), we have

a tran(R|M(S)) b iff a tran(R|M(S)∪{y}) b, (10)

where we denote RC by R to simplify the notation. (The “only if” part of (10) is trivial. Its “if” part
follows from the fact that z R y implies z R x, and y R z implies x R z, for any z ∈ S (because x ∼ y,
and R is %-transitive).) Now, there are three cases to consider.

Case 1. C(S) = ∅. In this case, by Proposition 4.1, there is no tran(R|M(S))-maximum in M(S). It
then follows from (10) that there is no tran(R|M(S)∪{y})-maximum in M(S)∪{y}. Since M(S ∪{y}) =
M(S) ∪ {y}, then, Proposition 4.1 entails C(S ∪ {y}) ∩ S = ∅.

Case 2. C(S) 6= ∅ and x ∈ S\C(S). In this case, we have C(S) R> x ∼ y. So, by Lemma A.3,
C(S) R> y, that is, C(S) is an R-highset in M(S) ∪ {y}. As C(S) is obviously an R-cycle and (9)
holds, we conclude, by Corollary 4.2, that C(S) is the top-cycle in M(S ∪ {y}) with respect to R, that
is, C(S) = C(S ∪ {y}).
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Case 3. x ∈ C(S). Again, obviously, C(S) is an R-cycle. Since x ∼ y and R extends %, therefore,
C(S) ∪ {y} is an R-cycle as well. Moreover, y ∼ x R> M(S)\C(S) and hence, y R> M(S)\C(S) by
Lemma A.3. It follows that C(S)∪{y} is an R-highset in M(S)∪{y}. In view of (9) and Corollary 4.2,
then, C(S)∪{y} is the top-cycle in M(S∪{y}) with respect to R, and hence, C(S)∪{y} = C(S∪{y}).
�

We now turn to the proof of Theorem 5.2 in which P stands for an arbitrarily fixed nonempty
subset of P(C). We define

DP := tran
(⋃
P
)
,

and write BP for the asymmetric part of this preorder. (We wish to show that DP is the supremum of
P in P(C) relative to the partial order w.) We organize our main argument in terms of several claims.

Claim 1. DP extends any member of P.

Proof of Claim 1. Take any % in P. Obviously, DP contains %. Next, take any x, y ∈ X with
x � y. To derive a contradiction, suppose x BP y does not hold. Since x DP y, this means that y DP x
holds as well. By definition of DP , then, there exist a k ∈ N, %1, ...,%k∈ P(C) and z0, ..., zk ∈ X such
that

x � y = z0 %1 z1 %2 · · · %k zk = x.

Put S := {z0, ..., zk}. Since C(S) 6= ∅, there is an i ∈ [k] such that zi ∈ C(S). If i > 0, Proposition
4.8 entails that zi−1 ∈ C(S), and continuing inductively, we find that y = z0 ∈ C(S). So, in all
contingencies, we have y ∈ C(S). But this is impossible, because y is not %-maximal in S, and (%,RC)
rationalizes C. �

Claim 2. (DP ,RC) is a preference structure on X.

Proof of Claim 2. Let us first show that RC extends DP . Take any x, y ∈ X with x DP y. Then,
there exist a k ∈ N, %1, ...,%k∈ P(C) and z0, ..., zk ∈ X such that

x = z0 %1 z1 %2 · · · %k zk = y. (11)

If k = 1, then x %1 y, and hence x RC y (because RC is a superrelation of %1). Suppose k ≥ 2. Then,
zk−2 %k−1 zk−1 %k zk, and hence zk−2 %k−1 zk−1 RC zk, so by %k−1-transitivity of RC , we find

x = z0 %1 z1 %2 · · · %k−2 zk−2RC zk = y.

If k = 2, we are done. Otherwise, we continue this way inductively to obtain x RC y in k − 1 steps.
Conclusion: x RC y. Now assume that we in fact had x BP y (which implies that at least one of the
orderings in (11) holds strictly). Let us show that x R=

C y could not hold in this case. Indeed, to derive
a contradiction, suppose x R=

C y so that y ∈ C{x, y}. Then, since x %1 z1, Lemma A.4 entails that
C{x, y} ⊆ C{x, y, z1}, so y ∈ C{x, y, z1}. If k ≥ 2, then, since z1 %1 z2, Lemma A.4 entails that y ∈
C{x, y, z1} ⊆ C{x, y, z1, z2}. Continuing this way inductively, we find that y ∈ C{x, y, z1, ..., zk−1}. But
then, since zk−1 %k y and (%k,RC) rationalizes C, Proposition 4.8 yields zk−1 ∈ C{x, y, z1, ..., zk−1}.
Continuing this way inductively, therefore, we find {x, y, z1, ..., zk−1} = C{x, y, z1, ..., zk−1}, but this
contradicts the fact that at least one of the orderings in (11) holds strictly. Conclusion: x BP y implies
x R>

C y.
It remains to establish that RC is DP -transitive. To this end, take any x, y, z ∈ X with x DP y

RC z. Then, there are k ∈ N, %1, ...,%k∈ P(C) and w0, ..., wk ∈ X such that

x = w0 %1 w1 %2 · · · %k wk = y RC z.

So, repeating the induction argument we gave in the previous paragraph, we find x RC z. That x RC

y DP z implies x RC z is similarly proved. �

Claim 3. For any S ∈ X and % ∈ P,

C(S) ⊆MAX(S,DP) ⊆MAX(S,%).
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Proof of Claim 3. The second containment is an immediate consequence of Claim 1. To establish
the first containment, take any x in C(S), and suppose that x is not DP -maximal in S. Then, there is
a y ∈ S with y BP x, and hence,

y = z0 %1 z1 %2 · · · %k zk = x

for some k ∈ N, %1, ...,%k∈ P(C) and z0, ..., zk ∈ X, with at least one of these ordering holding strictly.
(We have k > 1, for otherwise y �1 x, that is, x is not %1-maximal in S, contradicting x ∈ C(S).) Since
y ∈ S and y %1 z1, Lemma A.4 tells us that

C(S ∪ {z1}) ∩ S = C(S).

But then, since z1 ∈ S ∪ {z1} and z1 %2 z2, applying Lemma A.4 again yields

C(S ∪ {z1, z2}) ∩ (S ∪ {z1}) = C(S ∪ {z1}).

Intersecting both sides of this equation with S, and using the previous equation, then, we find

C(S ∪ {z1, z2}) ∩ S = C(S).

In fact, proceeding this way inductively, we may conclude that

C(S ∪ {z1, ..., zk}) ∩ S = C(S). (12)

In particular, x belongs to C(S ∪ {z1, ..., zk}). But then, by Proposition 4.8, zk−1 belongs to C(S ∪
{z1, ..., zk}) as well. In fact, applying Proposition 4.8 this way inductively, we find that z0, ..., zk ∈
C(S ∪ {z1, ..., zk}). But this is impossible, for zi−1 �i zi holds for at least one i ∈ {1, ..., k}, so, being
not %i-maximal in S ∪ {z1, ..., zk}, zi cannot belong to C(S ∪ {z1, ..., zk}). �

Claim 4. (DP ,RC) rationalizes C.

Proof of Claim 4. Take any S ∈ X and note that C(S) is an RC-cycle in C(S). So, since, by
Claim 3, C(S) ⊆MAX(S,DP), it is plain that C(S) is an RC-cycle in MAX(S,DP). Now pick any %
∈ P(C). Then, C(S) is an RC-highset in MAX(S,%). By Claim 3, therefore, C(S) is an RC-highset
in MAX(S,DP) as well. This means that C(S) is the top-cycle in MAX(S,DP) with respect to RC ,
as we claimed. �

Claims 2 and 4 jointly imply that DP belongs to P(C). It then follows from Claim 1 that DP is
the supremum of P in P(C) relative to w. In view of the arbitrary choice of P above, we conclude that
P(C) is a complete ∨-semilattice relative to this partial order. The proof of Theorem 5.2 is complete.

Proof of Theorem 5.3

Throughout the proof, we will denote RC by R to simplify the notation. (That is, for any x and y in
X, we have {x} = C{x, y} iff x R> y, and {x, y} = C{x, y} iff x R= y.) Consequently, �C ⊆ R> and
∼C ⊆ R=, that is, that R extends %C . We will use these facts below as a matter of routine. Also,
when % ∈ P(C), we again write M(S) = MAX(S,%) for any S ∈ X. The following lemmata are stated
in the setting of Theorem 5.3.

Lemma A.5. For any finite S ∈ X,

{x} = C(S) implies {x} = C{x, y} for every y ∈ S.

Proof. Take any finite S ∈ X with {x} = C(S). If S = {x}, there is nothing to prove, so assume
otherwise, and pick any y ∈ S\{x}. Take any % ∈ P(C), and denote RC by R to simplify the notation.
If y ∈ M(S), then since {x} is the top-cycle in M(S) with respect to R, we have x R> y. If y is not
%-maximal in S, then z � y holds for some z ∈ S. As S is finite, we may assume that z ∈ M(S). If
z = x, then, obviously, {x} = C{x, y}, so assume that z 6= x. Then, since {x} =©(M(S),R), we have
x R> z � y, so, by Lemma A.3, we again find x R> y. Since {x} = C{x, y} iff x R> y, we are done. �
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Lemma A.6. For any S ∈ X and x ∈ S,

x �C y implies C(S ∪ {y}) = C(S).

Proof. Take any S ∈ X. Let x and y be two elements of X with x �C y. Then, x R> y, so y % x
cannot hold (because R extends %). Besides, if there is a z ∈ S with z � y, then C(S ∪ {y}) ⊆ S, so,
by Lemma A.4, C(S ∪ {y}) = C(S), and we are done. It remains to consider the case where (x, y) ∈
Inc(%) and y ∈M(S ∪ {y}).

Since x �C y implies that y does not belong to C(S ∪ {y}), we have

C(S ∪ {y}) ⊆M(S ∪ {y}) ∩ S ⊆M(S).

Now, we claim that C(S ∪ {y}) is an R-highset in M(S) To see this, take any %-maximal z in S that
does not belong to C(S ∪ {y}). If z ∈ M(S ∪ {y}), then we clearly have C(S ∪ {y}) R> z (because
C(S ∪ {y}) is an R-highset in M(S ∪ {y}). If z /∈M(S ∪ {y}), then, since y ∈M(S ∪ {y})\C(S ∪ {y}),
we have C(S ∪ {y}) R> y � z, which implies C(S ∪ {y}) R> z by Lemma A.3. So, C(S ∪ {y}) is an
R-highset in M(S). As C(S ∪ {y}) is obviously an R-cycle, C(S ∪ {y}) = C(S) by Corollary 4.2. �

We now turn to the proof of Theorem 5.3.

Claim 1. R is %C-transitive.

Proof of Claim 1. Let us first show that R is �C-transitive. Take any x, y, z ∈ X with x R y �C z.
If x R z is false, then z R> x (because R is complete). Take any % in P(C). Clearly, y � x cannot
hold (because % ⊆ R). If, on the other hand, x � y, then {x} = C{x, y, z}, and by Lemma A.5, this
implies x R> z, a contradiction. Thus: (x, y) ∈ Inc(�). Similarly, x � z cannot hold (because % ⊆ R),
and if z � x, then {y} = C{x, y, z}, and by Lemma A.5, this implies y R> x, a contradiction. Thus:
(x, y) ∈ Inc(�). Finally, note that z � y cannot hold (because � ⊆ �C), and if y � z, then Lemma A.3
implies y R> x, a contradiction. Thus: (y, z) ∈ Inc(�). Conclusion: MAX({x, y, z},%) = {x, y, z}.
Then, by Proposition 4.1, {x, y, z} = C{x, y, z}, but this contradicts y �C z. Thus: R ◦ �C ⊆ R. One
can similarly prove that �C ◦R ⊆ R.

We next show that R is ∼C-transitive. Take any x, y, z ∈ X with xR y ∼C z. The second part of
this statement entails that x ∈ C({x} ∪ {y}) iff x ∈ C({x} ∪ {z}). But x ∈ C{x, y} (because x R y), so
we find that x ∈ C{x, z}, that is, x R z. We thus conclude that R ◦ ∼C ⊆ R. One can similarly prove
that ∼C ◦R ⊆ R. �

Claim 2. %C is transitive.

Proof of Claim 2. Observe that it is sufficient to verify (i) ∼C is transitive, (ii) �C is transitive, and
(iii) �C is ∼C-transitive. The construction of ∼C readily implies (i). For (ii), suppose that x �C y �C z
but x �C z does not hold for some x, y, z ∈ X. Then, there exists an S ∈ X with x ∈ S and z ∈ C(S).
As x �C y, Lemma A.6 implies that z ∈ C(S) = C(S ∪ {y}). But this is a contradiction since y �C z.
Thus, x �C y �C z must imply x �C z. For (iii), take any x, y, z ∈ X such that x �C y ∼C z. Let S be
an arbitrary element of X with x ∈ S. (We wish to show that z does not belong to C(S).) If z does not
belong to S, there is nothing to prove, so suppose z ∈ S. As x �C y and x ∈ S, we have y /∈ C(S ∪{y}).
Thus, since y ∼C z, we have z /∈ C(S ∪ {z}) = C(S). An analogous argument shows that x ∼C y �C z
implies x �C z as well. �

Claim 3. For any % ∈ P(C), %C extends %.

Proof of Claim 3. Let % ∈ P(C). If x � y for some x, y ∈ X, then y /∈M(S) and thus y /∈ C(S) for
all S ∈ X with x ∈ S. So, � ⊆ �C . In the rest of the proof, we prove that ∼ ⊆ ∼C . Take any x, y ∈ X
with x ∼ y. Let S be an arbitrarily fixed element of X, and put Tx := M(S∪{x}) and Ty := M(S∪{y}).
Since % is a preorder, it is readily checked that x ∼ y implies T := Tx ∩ S = Ty ∩ S.

Now assume x ∈ C(S ∪ {x}). Then, x ∈ M(S ∪ {x}), and hence, y ∈ M(S ∪ {y}) (because % is a
preorder and x ∼ y), that is, y ∈ Ty. Moreover, by Proposition 4.1, x tran(R|Tx) Tx. So, if z ∈ T ⊆ Tx,
there is a positive integer k such that x R w0 R · ·· R wk = z for some w0, ..., wk ∈ Tx. Here, we can
in fact assume that w0, ..., wk ∈ T without loss of generality. (For, otherwise, wi = x for some i ∈ [k].
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Then, set l := max{i ∈ [k] : wi = x}, and we have x R wl+1 R · ·· R wk = z with wi ∈ T for all
i = l + 1, . . . , k.) Since y ∼ x and R is %-transitive, this implies y R w0 R · ·· R wk = z. Thus, y
tran(R|Ty

) T. If z ∈ Ty\T , then z = y, and we obviously have y tran(R|Ty
) z. Conclusion: y tran(R|Ty

)
Ty. By Proposition 4.1, this yields y ∈ C(S ∪{y}), as we sought. By symmetry, therefore, we conclude:
x ∈ C(S ∪ {x}) iff y ∈ C(S ∪ {y}).

Next, take any z in S with z ∈ C(S ∪ {x}). Then, z ∈ M(S ∪ {x}), and hence, z ∈ M(S ∪ {y})
(because % is a preorder and x ∼ y), that is, z ∈ Ty. Moreover, by Proposition 4.1, z tran(R|Tx

) Tx.
Now, take any w ∈ Ty. Then, we can show that there is a positive integer k with

z R w0 R w1 R · · · R wk R w for some w0, . . . , wk ∈ Tx. (13)

(Indeed, if w ∈ T ⊆ Tx, then z tran(R|Tx
) w, and (13) follows at once. If w ∈ Ty \ T , then y = w ∈ Ty,

which implies x ∈ Tx and hence z tran(R|Tx
) x ∼ y. So, there is a positive interger k such that

zRw0 R w1 R · · · R wk R x ∼ y for some w0, . . . , wk ∈ Tx. This again implies (13) by %-transitivity
of R.) For the sequence w0, ..., wk in (13), define

w′i :=

{
wi, if wi 6= x
y, if wi = x,

for each i ∈ [k], and note that z R w′1 R · ·· R w′k R w by %-transitivity of R. Since w′i ∈ Ty for each
i ∈ [k], this shows that z tran(R|Ty

) w. It then follows from the arbitrary choice of w that z tran(R|Ty
)

Ty, that is, z ∈ C(S ∪ {y}), as we sought. By symmetry, therefore, we conclude: z ∈ C(S ∪ {x}) iff
z ∈ C(S ∪ {y}) for every z ∈ S. In view of the arbitrariness of S, this establishes that ∼ ⊆ ∼C . �

In view of Theorem 5.2, we have
∨
P(C) ∈ P(C). So, by Claim 3, it follows that

∨
P(C) ⊆ %C . As

R extends %C , Claim 1 and Claim 2 imply that (%C ,R) is a preference structure on X. Since
∨

P(C) is
the largest preorder in P(C), if (%C ,R) rationalizes C, then %C ⊆

∨
P(C). The next claim estabilishes

this step, hence completing the proof of Theorem 5.3.

Claim 4. (%C ,R) rationalizes C.

Proof of Claim 4. Take any S in X and % ∈ P(C). If x ∈ C(S), then y �C x holds for no y ∈ S
by definition of �C , implying that x ∈MAX(S,%C). So, C(S) ⊆MAX(S,%C). In addition, we have
MAX(S,%C) ⊆M(S) as %C extends % by Claim 3. These observations readily imply that C(S) is an
R-highset in MAX(S,%C). (Indeed, if x ∈ C(S) and y ∈ MAX(S,%C)\C(S), then y ∈ M(C)\C(S)
and thus xR> y.) As C(S) is obviously an R-cycle, we conclude that C(S) =©(MAX(S,%C),R) by
Corollary 4.2. The proof is complete. �

Proof of Theorem 5.4

In view of Theorems 4.3, 5.2 and 5.3, P(C) is a complete ∨-semilattice such that
∨

P(C) = %C . It
remains to prove that P(C) is a complete ∧-semilattice as well. To this end, fix an arbitrary nonempty
subset P of P(C), and define D :=

⋂
P. We will complete our proof by showing that D belongs to

P(C). It is readily checked that D is a preorder on X and R is a D-transitive extension of D, that is,
(D,R) is a preference structure. Below we prove that (D,R) rationalizes C.

Claim. Every % in P extends D.

Proof of Claim. If x B y, then x % y for every % ∈ P and x �∗ y for some %∗ ∈ P. If x ∼ y
holds for some % ∈ P, then x R= y, while x �∗ y implies x R> y (since R extends both % and %∗), a
contradiction. Thus, we must have x � y for all % ∈ P. �

Let us now fix an arbitrary S in k(X). Note that

C(S) ⊆MAX(S,%) ⊆MAX(S,D)

for every % ∈ P. (Here the first containment follows from the fact that (%,R) rationalizes C, and the
second from the Claim above.) Obviously, C(S) is an R-cycle. We claim that it is also an R-highset
in MAX(S,D). To prove this, take any x ∈ C(S) and y ∈ MAX(S,D)\C(S), and suppose, to derive
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a contradiction, that y R x. If y ∈ MAX(S,%) for some % ∈ P, then x R> y (because C(S) is an
R-highset in MAX(S,%)), a contradiction. Assume, then, y is not %-maximal in S for any % ∈ P.
Next, fix an arbitrary element %∗ of P. Since y is not %∗-maximal in S, Lemma A.2 entails that there
is a z ∈MAX(S,%∗) with z �∗ y. If z does not belong to C(S), then x R> z �∗ y, and hence, x R> y
(Lemma A.3), again a contradiction. So, we assume that z ∈ C(S). Then, as C(S) is an R-cycle, there
exist a k ∈ N and w0, ..., wk ∈ C(S) such that

y R x = w0 R w1 R · · · R wk = z. (14)

Define ` := min{i ∈ [k] : wi �∗ y}. This number is well-defined, because wk = z �∗ y. Moreover, ` > 0,
because, as y R x = w0, and R extends %∗, we cannot have w0 �∗ y. Now, by definition of `, y is
%∗-maximal in {y, w0, ..., w`−1}, and hence, since (%∗,R) rationalizes C, (14) implies

y ∈ C{y, w0, ..., w`−1}, (15)

while, of course,
y /∈ C{y, w0, ..., w`}. (16)

But then, an immediate application of Proposition 4.1 shows that (14), (15) and (16) may jointly hold
only if w` � y for every % ∈ P (because (%,R) rationalizes C for each % ∈ P). Since w` ∈ S, it follows
that y is not D-maximal in S, in contradiction to the choice of y. Conclusion: C(S) is an R-highset
in MAX(S,D), and hence, C(S) =©(MAX(S,D),R) by Corollary 4.2. The proof of Theorem 5.4 is
now complete.

References

Armstrong, W., The determinateness of the utility function, Econ. J. 49 (1939), 453-467.

Au, P. and K. Kawai, Sequentially rationalizable choice with transitive rationales, Games Econ. Behav.
73 (2011), 608-614.

Beja, A. and I. Gilboa, Numerical representations of imperfectly ordered preferences (A unified geo-
metric exposition), J. Math. Psych. 36 (1992), 426-449.

Bordalo, P., N. Gennaioli, and A. Schleifer, Salience theory of choice under risk, Q. J. Econ. 127 (2012),
1243-1285.

Bewley, T., Knightian uncertainty theory: part I, Cowles Foundation Discussion Paper No. 807 (1986).

Cerreia-Vioglio, S., D. Dillenberger, and P. Ortoleva, Cautious expected utility and the certainty effect,
Econometrica 83 (2015), 693-728.

Cerreia-Vioglio, S. and E. A. Ok, Rational core of preference relations, mimeo, NYU, 2018.

Cerreia-Vioglio, S., A. Giarlotta, S. Greco, F. Maccheroni, and M. Marinacci, Rational preference and
rationalizable choice, forthcoming in Econ. Theory.

Cherepanov, V., T. Feddersen, and A. Sandroni, Rationalization, Theoret. Econ. 8 (2013), 775–800.

Costa-Gomez, M., C. Cueva, G. Gerasimou, and M. Tejiscak, Choice, deferral and consistency, mimeo,
Univ. St. Andrews, 2019.

Costa, M., P. Ramos, and G. Riella, Single-crossing choice correspondences, mimeo, Univ. Braśılia,
2019.

Danan, E., Revealed preference and indifferent selection, Math. Soc. Sci. 55 (2008), 24-37.

Day, B., and G. Loomes, Conflicting violations of transitivity and where they may lead us, Theory
Decis. 68 (2010), 233-245.

Doignon, J-P., B. Monjardet, M. Roubens, and Ph. Vincke, Biorder families, valued relations, and
preference modelling, J. Math. Psychol. 4 (1986), 435-480.

41



Donaldson, D. and J. Weymark, A quasiordering is the intersection of orderings, J. Econ. Theory 78
(1998), 382-387.

Dubra, J., F. Maccheroni, and E. A. Ok, Expected utility theory without the completeness axiom, J.
Econ. Theory 115 (2004), 118-133.

Duggan, J., A systematic approach to the construction of non-empty choice sets, Soc. Choice Welfare
28 (2007), 491-506.

Dushnik, B. and E. Miller, Partially ordered sets, Amer. J. Math. 51 (1941), 600-610.

Ehlers, L., and Y. Sprumont, Weakened WARP and top-cycle choice rules, J. Math. Econ. 44 (2008),
87-94.

Eliaz, K. and E. A. Ok, Indifference or indecisiveness: Choice-theoretic foundations of incomplete
preferences, Games Econ. Behav. 56 (2006), 61-86.

Evren, O., Scalarization methods and expected multi-utility representations, J. Econ. Theory 151
(2014), 30-63.

Evren, O. and E. A. Ok, On the multi-utility representation of preference relations, J. Math. Econ. 47
(2011), 554-563.

Evren, O., H. Nishimura, and E. A. Ok, Top Cycles and Revealed preference structures, mimeo,
http://hirokinishimura.net/files/RevPS.pdf.

Fishburn, P., Intransitive indifference in preference theory: A survey, Operations Research 18 (1970),
207-228.

Fishburn, P., Nontransitive preferences in decision theory, J. Risk Uncertainty 4 (1991), 113-134.

Frick, M., Monotone threshold representations, Theoret. Econ. 11 (2016), 757-772.

Galaabaatar, T., and E. Karni, Subjective expected utility with incomplete preferences, Econometrica
81 (2013), 255-284.

Garćıa-Sanz, M. and J. Alcantud, Sequential rationalization of multivalued choice, Math. Soc. Sci. 74
(2015), 29-33.

Giarlotta, A., New trends in preference, utility, and choice: from a mono-approach to a multi-approach,
mimeo, University of Catania, 2018.

Giarlotta, A., and S. Greco, Necessary and sufficient preference structures, J. Math. Econ. 49 (2013),
163-172.

Giarlotta, A., and S. Watson, A general theory of bi-preferences, mimeo, University of Catania, 2018.

Gilboa, I., and D. Schmeidler, Maxmin expected utility with non-unique prior, J. Math. Econ. 18
(1988), 141-153.

Gilboa, I., D. Schmeidler, F. Maccheroni, and M. Marinacci, Objective and subjective rationality in a
multi-prior model, Econometrica 78 (2010), 755-770.

Hara, K., E. A. Ok, and G. Riella, Coalitional expected multi-utility theory, Econometrica 87 (2019),
933-980.

Heller, Y., Justifiable choice, Games Econ. Behav. 76 (2012), 375-390.

Kahneman, D. and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica 47
(1979), 263–292.

Kalai, E., and D. Schmeidler, An admissible set occuring in various bargaining situations, J. Econ.
Theory 146 (1977), 402-411.

Laslier, J.-F., Tournament Solutions and Majority Voting, Studies in Economic Theory 7, Springer-
Verlag, Heidelberg, 1997.

42



Lehrer, E., and R. Teper, Justifiable preferences, J. Econ. Theory 146 (2011), 762-774.

Lleras, J., Y. Masatlioglu, D. Nakajima, and E. Ozbay, When more is less: Limited consideration, J.
Econ. Theory 170 (2017), 70-85.

Lombardi, M., Uncovered set choice rules, Soc. Choice Welfare 31 (2008), 271-279.

Lombardi, M., Reason-based choice correspondences, Math. Soc. Sci. 57 (2009), 58-66.

Loomes, G., and Sugden, R., Regret theory: An alternative theory of rational choice under uncertainty,
Econ. J. 92 (1982), 805-824.

Luce, D., Semiorders and a theory of utility discrimination, Econometrica, 24 (1956), 178-191.

Mandler, M., Incomplete preferences and rational intransitivity of choice, Games Econ. Behav. 50
(2005), 255-277.

Manzini, P., and M. Mariotti, Sequentially rationalizable choice, Amer. Econ. Rev. 97 (2007), 1824–
1839.

Masatlioglu, Y., D. Nakajima, and E. Ozbay, Revealed attention, Amer. Econ. Rev. 102 (2012),
2183-2205.

Nishimura, H., The transitive core: Inference of welfare from nontransitive preference relations, Theoret.
Econ. 13 (2018), 579-606.

Nishimura, H. and E. A. Ok, Utility representation of an incomplete and nontransitive preference
relation, J. Econ. Theory 166 (2016), 164-185.

Ok, E. A., Utility representation of an incomplete preference relation, J. Econ Theory 104 (2002),
429-449.

Ok, E. A., P. Ortoleva, and G. Riella, Incomplete preferences under uncertainty: Indecisiveness in
beliefs versus tastes, Econometrica 80 (2012), 1791-1808.

Ok, E. A., P. Ortoleva, and G. Riella, Revealed (P)Reference Theory, Amer. Econ. Rev. 105 (2015),
299-321.

Riberio, M., and G. Riella, Regular preorders and behavioral indifference, Theory Decis. 82 (2017),
1-12.

Rubinstein, A., Similarity and decision-making under risk (is there a utility theory resolution to the
Allais paradox?), J. Econ. Theory 46 (1988), 145-153.

Salant, Y., and A. Rubinstein, (A, f): Choice with frames, Rev. Econ. Stud. 75 (2008), 1287-1296.

Schwartz, T., Rationality and the myth of the maximum, Noũs 6 (1972), 97-117.
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